Environ. Eng. Res. 2024; 29(4): 230596 https://doi.org/10.4491/eer.2023.596

Supplementary Materials

Fig. S1 a) Effects of ZCNB dosage on the photocatalytic degradation of DC (Mass of catalyst: 0.1 gram; DC concentration of 25 mg·L⁻¹; the volume of 200 mL (pH~5); time for dark adsorption is 60 min and for illumination is 120 minutes); b) Degradation experiments for the removal of various contaminant with ZCNB within 120 min under visible light (operational conditions: ZCNB: 0.1 g, pH: 5.0 and DC: 25 mg L⁻¹) and c) Effect of inorganic anions on photocatalytic degradation of DC by ZCNB (Mass of catalyst: 0.1 gram; DC concentration of 25 mg·L⁻¹; the volume of 200 mL (pH~5); anion/DC molar ratio of 20.5; time for dark adsorption is 60 min and for illumination is 120 minutes).

Table S1. Photodegradation efficiency (PE%) of DC on samples: ZnO, g-C₃N₄ and ZCNB-x composite samples

Samples	Mass ratio of ZnO/g-C ₃ N ₄ /BC (g/g/g)	PE(%)
ZnO	2/0/0	9.42
g-C ₃ N ₄	0/1.0/0	48.09
ZCN	2/1.0/0	69.74
ZCNB-0,25	2/.0/0.25	85.12
ZCNB-0,50	2/1.0/0.50	98.92
ZCNB-0,75	2/1.0/0.75	89.71
ZCNB-1,00	2/1.0/1.00	80.21

Table S2. Photo	degradation	efficiency	of [C	(PE%)	on	ZCNB	sample	es at	different	calcination	temperatur
-----------------	-------------	------------	------	---	-------	----	------	--------	-------	-----------	-------------	------------

Notation	Calcination temperature (°C)	PE (%)
ZCNB400	400	90.15
ZCNB450	450	98.17
ZCNB500	500	95.12
ZCNB550	550	90.18
ZCNB600	600	86.13

Table S3. The average crystalline size (D), and band gap energy (E_g) of the synthesized samples

Samples	ZnO	g-C ₃ N ₄	ZCN	ZCNB
D (nm)	30.3	-	26.6	24.0
$E_{\rm g}$ (eV)	3.18	2.79	2.66	2.53

Table S4. N2 physical absorption characteristics of ZnO, g-C3N4, biochar and ZCNB

	ZnO	g-C ₃ N ₄	Biochar	ZCN	ZCNB
Specific surface area (m ² .g ⁻¹)	5.5	36.8	22.8	25.4	25.1
Pore volume (cm ³ .g ⁻¹)	0.02	0.16	0.01	0.15	0.14
Average pore diameter (nm)	16.9	31.29	12.43	35.02	28.93

Table S5. A comparison of the rate constant of doxycycline degradation with the previous reports

Catalysts	$E_{\rm bg}$ (eV)	Light source	$C_0 \text{ (mg·L}^{-1}\text{)}$ /Vol. (mL) /m _{catalyst} (mg)	$k \pmod{1}$	Ref.
ZnO ^{/g} -C ₃ N ₄ /biochar	2.53	50W Compact lamp with a 420 nm cutoff filter	25/200/100	0.06905	The present work
NiFe ₂ O ₄ /MWCNTs/BiOI	2.41	An ultraviolet lamp (20 W, 395 nm)	45/80/125	0.00720	[1]
$g-C_3N_4 + H_2O_2$	2.56	300 W of simulated sunlight	20/100/100	0.01800	[2]
$In_2O_3 + H_2O_2$	2.76	300 W of simulated sunlight	20/100/100	0.05800	[2]
In ₂ O ₃ /g-C ₃ N ₄	2.56-2.76	300 W of simulated sunlight	20/100/100	0.00880	[2]
30 -FPMG NCs + H_2O_2	2.92	1000 W halogen lamp	75/20/1	0.01000	[3]
$g-C_3N_4/Ni_{0.5}Zn_{0.5}Fe_2O_4$	2.35	Solar ligh	20/100/30	0.08300	[4]
Co/Mn-MOF-74@g-C ₃ N ₄	1.73	$300\ W$ halogen lamp with a $420\ nm$ cutoff filter	40/40/50	0.00459	[5]

Table S6. The characteristics of the shrimp aquaculture wastewater

	pН	TOC ^a (mg/L)	COD ^a (mg/L)	DO ^a (mg/L)	NH4 ⁺ -N (mg/L)	PO4 ³⁻ -P (mg/L)
Before degradation	7.5	40.1	120.5	4.1	31.2	10.4
After degradation	8.2	10.8	15.6	0.1	1.5	2.3

^a TOC-Total Organic Carbon; COD-Chemical Oxygen Demand; DO-Dissolved Oxygen

Reference

- 1. Yan X, Quian J, Pei X et al. Enhanced photodegradation of doxycycline (DOX) in the sustainable NiFe₂O₄/MWCNTs/BiOI system under UV light irradiation. *Environ. Res.* 2021;199:111264. https://doi.org/10.1016/j.envres.2021.111264.
- 2. Liu W, Zhang J, Kang Q, Chen H, Feng R. Enhanced photocatalytic degradation performance of In₂O₃/g-C₃N₄ composites by coupling with H₂O₂. *Ecotoxicol. Environ. Saf.* 2023;252:114611. https://doi.org/10.1016/j.ecoenv.2023.114611.
- 3. Swetha S, Maksoud MAA, Okla MK et al. Triple-mechanism driven Fe-doped n-n hetero-architecture of Pr_6O_{11} -MoO₃ decorated g- C_3N_4 for doxycycline degradation and bacterial photoinactivation. *Chem. Eng. J.* 2023;461:141806. https://doi.org/10.1016/j.cej.2023. 141806.
- 4. Dhiman P, Rana G, Alshgari RA et al. Magnetic Ni-Zn ferrite anchored on g-C₃N₄ as nano-photocatalyst for efficient photo-degradation of doxycycline from water. *Environ. Res.* 2023;216(Pt3):114665. https://doi.org/10.1016/j.envres.2022.114665.
- 5. Wen Q, Li D, Li H et al. Synergetic effect of photocatalysis and peroxymonosulfate activated by Co/Mn-MOF-74@g-C₃N₄ Z-scheme photocatalyst for removal of tetracycline hydrochloride. *Sep. Purif. Technol.* 2023;313:123518. https://doi.org/10.1016/j.seppur.2023. 123518.