

Environ. Eng. Res. 2024; 29(1): 230056 https://doi.org/10.4491/eer.2023.056

## Supplementary Materials



Fig. S1. Schematic diagram of the experimental setup of E-Fenton.



Fig. S2. Normal plots of residuals (a, d), Residuals vs. predicted plots (b, e), Predicted vs. actual plots (c, f) for % COD degradation and energy consumption, respectively.



Fig. S3. Proposed pathway for the degradation of electroplating effluents by E-Fenton process.



**Fig. S4.** (a) The average degradation of COD by GO/TiO<sub>2</sub>NTs electrodes in the presence of scavengers and (b) Degradation of electroplating effluents in the presence of different scavengers under optimal operational parameters.



Fig. S5. Reusability and stability of GO/TiO2NTs electrode up to thirty consecutive cycles.

| Factor | Parameters                                 | Range of actual and coded variables |           |                       |  |
|--------|--------------------------------------------|-------------------------------------|-----------|-----------------------|--|
| ractor |                                            | Coded Low level (-1)                | Coded (0) | Coded High level (+1) |  |
| А      | Time; t (min)                              | 30                                  | 90        | 150                   |  |
| В      | Current; i (Ampere)                        | 0.4                                 | 1.0       | 1.6                   |  |
| С      | Ferrous Sulphate Concentration; (CFe) (mM) | 0.2                                 | 0.6       | 1.0                   |  |

Table S1. Experimental design levels of chosen parameters

Table S2. ANOVA suggested by BBD for the % COD removal and energy consumption

|                   | % COD Degradation |    |        |         |          | <b>Energy Consumption</b> |    |        |         |          |
|-------------------|-------------------|----|--------|---------|----------|---------------------------|----|--------|---------|----------|
| Source            | SS                | DF | MS     | F-value | p-value  | SS                        | DF | MS     | F-value | p-value  |
| Model             | SS                | DF | MS     | F-value | p-value  | 19.77                     | 9  | 2.20   | 273.73  | < 0.0001 |
| A-Time            | 299.50            | 9  | 33.28  | 32.75   | < 0.0001 | 5.19                      | 1  | 5.19   | 646.60  | < 0.0001 |
| B-Current         | 62.83             | 1  | 62.83  | 61.84   | 0.0001   | 13.60                     | 1  | 13.60  | 1694.11 | < 0.0001 |
| $C-FeSO_4$        | 195.92            | 1  | 195.92 | 192.82  | < 0.0001 | 0.0003                    | 1  | 0.0003 | 0.0431  | 0.8415   |
| AB                | 11.59             | 1  | 11.59  | 11.41   | 0.0118   | 0.8741                    | 1  | 0.8741 | 108.91  | < 0.0001 |
| AC                | 7.51              | 1  | 7.51   | 7.39    | 0.0298   | 0.0040                    | 1  | 0.0040 | 0.4943  | 0.5047   |
| BC                | 0.4356            | 1  | 0.4356 | 0.4287  | 0.5335   | 0.0002                    | 1  | 0.0002 | 0.0307  | 0.8658   |
| A <sup>2</sup>    | 0.0002            | 1  | 0.0002 | 0.0002  | 0.9885   | 0.0970                    | 1  | 0.0970 | 12.09   | 0.0103   |
| $B^2$             | 14.96             | 1  | 14.96  | 14.72   | 0.0064   | 0.0016                    | 1  | 0.0016 | 0.1988  | 0.6692   |
| $\mathbb{C}^2$    | 2.96              | 1  | 2.96   | 2.91    | 0.1319   | 0.0073                    | 1  | 0.0073 | 0.9048  | 0.3732   |
| Residual          | 3.47              | 1  | 3.47   | 3.41    | 0.1073   | 0.0562                    | 7  | 0.0080 |         |          |
| Lack of Fit       | 7.11              | 7  | 1.02   |         |          | 0.0549                    | 3  | 0.0183 | 56.10   | 0.0010   |
| Pure Error        | 1.46              | 3  | 0.4873 | 0.3449  | 0.7958   | 0.0013                    | 4  | 0.0003 |         |          |
| Correlation Total | 5.65              | 4  | 1.41   |         |          | 19.83                     | 16 |        |         |          |

\*DF- Degree of freedom; SS – Sum of squares; MS - Mean of squares.

| SS      | D      | н     | MS                  | F-value             | p-value      | Remark          | SS        | DF             | MS                  | F-value             | p-value  | Remark    |
|---------|--------|-------|---------------------|---------------------|--------------|-----------------|-----------|----------------|---------------------|---------------------|----------|-----------|
|         |        | % COD | degradation         | u                   |              |                 |           |                | Energy co           | onsumption          | _        |           |
|         |        |       |                     | Se                  | squential mo | del sum of sq   | uares     |                |                     |                     |          |           |
| 1.335E+ | -05 1  | 1.    | 335E+05             |                     |              |                 | 81.51     | 7              | 81.51               |                     |          |           |
| 270.3   | 5 3    |       | 90.12               | 32.31               | < 0.0001     |                 | 18.79     | 3              | 6.26                | 78.11               | < 0.0001 |           |
| 7.94    | ŝ      |       | 2.65                | 0.9350              | 0.4595       |                 | 0.8783    | 3              | 0.2928              | 17.86               | 0.0002   |           |
| 21.21   |        |       | 7.07                | 6.96                | 0.0166       | Suggested       | 0.1077    | 3              | 0.0359              | 4.47                | 0.0470   | Suggested |
| 1.46    | 33     |       | 0.4873              | 0.3449              | 0.7958       | Aliased         | 0.0549    | 3              | 0.0183              | 56.10               | 0.0010   | Aliased   |
| 5.65    | 4      |       | 1.41                |                     |              |                 | 0.0013    | 4              | 0.0003              |                     |          |           |
| 1.338E+ | -05 15 |       | 7869.35             |                     |              |                 | 101.34    | 17             | 5.96                |                     |          |           |
|         |        |       |                     |                     | Lack         | of fit tests    |           |                |                     |                     |          |           |
| 30.61   | 6      |       | 3.40                | 2.41                | 0.2062       |                 | 1.04      | 6              | 0.1157              | 354.67              | < 0.0001 |           |
| 22.67   | , 6    |       | 3.78                | 2.67                | 0.1801       |                 | 0.1626    | 9              | 0.0271              | 83.10               | 0.0004   |           |
| 1.46    | 33     |       | 0.4873              | 0.3449              | 0.7958       | Suggested       | 0.0549    | 3              | 0.0183              | 56.10               | 0.0010   | Suggested |
| 0.000   | 0 0    | -     |                     |                     |              | Aliased         | 0.0000    | 0              |                     |                     |          | Aliased   |
| or 5.65 | 4      |       | 1.41                |                     |              |                 | 0.0013    | 4              | 0.0003              |                     |          |           |
|         |        |       |                     |                     | Model su     | mmary statistic | Ş         |                |                     |                     |          |           |
| Std. d€ | şν. R  | 7     | Adj. R <sup>2</sup> | Pre. $\mathbb{R}^2$ | Press        | Remark          | Std. dev. | $\mathbb{R}^2$ | Adj. R <sup>2</sup> | Pre. R <sup>2</sup> | Press    | Remark    |
| 1.67    | 0.85   | 317   | 0.8544              | 0.7835              | 66.38        |                 | 0.2831    | 0.9474         | 0.9353              | 0.8917              | 2.15     |           |
| 1.68    | 0.90   | 176   | 0.8522              | 0.6546              | 105.90       |                 | 0.1280    | 0.9917         | 0.9868              | 0.9646              | 0.7027   |           |
| c 1.01  | 0.97   | 768   | 0.9470              | 0.8949              | 32.22        | Suggested       | 0.0896    | 0.9972         | 0.9935              | 0.9556              | 0.8801   | Suggested |
| 1.19    | 0.98   | 316   | 0.9263              |                     |              | Aliased         | 0.0181    | 0.99999        | 0.9997              |                     |          | Aliased   |

| consumpt  |
|-----------|
| energy    |
| and       |
| gradation |
| qe        |
| 00        |
| %         |
| for       |
| mode      |
| quate     |
| ade       |
| of        |
| election  |
| Š         |

|           | 1 1 7          | i õ                | 6,                  | •              |
|-----------|----------------|--------------------|---------------------|----------------|
| Responses | $\mathbf{R}^2$ | Adj R <sup>2</sup> | Pred R <sup>2</sup> | Adeq Precision |
| $Z_1$     | 0.9768         | 0.9470             | 0.8949              | 21.0112        |
| $Z_2$     | 0.9972         | 0.9935             | 0.9556              | 61.3909        |
|           |                |                    |                     |                |

Table S4. Various  $R^2$  values proposed by BBD for responses % COD degradation (Z<sub>1</sub>) and energy consumption (Z<sub>2</sub>)

 $Z_1: \ \% \ \text{COD} \ \text{Removal}; \ Z_2: \ \text{Energy} \ \text{Consumption} \ (kWh/m^3); \ R^2: \ R-squared; \ \text{Adj: Adjusted}; \ \text{Pre- Predicted}; \ \text{Adeq: Adequate.} \ Adequate.$ 

| S.No. | Compound                             | Formula           | Retention Time (min) | Molecular Mass | Matching % |
|-------|--------------------------------------|-------------------|----------------------|----------------|------------|
| 1     | (3-Methyl-oxiran-2-yl) methanol      | $C_4H_8O_2$       | 1.653                | 88.11          | 68.08      |
| 2     | Methylazoxymethanol acetate          | $C_4H_8N_2O_3$    | 1.710                | 132.11         | 71.47      |
| 3     | Propanedioic acid                    | $C_3H_4O_4$       | 2.057                | 104.06         | 76.89      |
| 4     | Azodicarbonamide                     | $C_2H_4N_4O_2$    | 2.157                | 116.08         | 75.72      |
| 5     | Propanoic acid, ethyl ester          | $C_5H_{10}O_2$    | 2.994                | 102.13         | 91.97      |
| 6     | Ethylene glycol acetate formate      | $C_5H_8O_4$       | 5.120                | 132.11         | 75.73      |
| 7     | 1-Butanamine, Nmethyl-               | $C_5H_{13}N$      | 9.509                | 87.16          | 69.33      |
| 8     | n-Hexylmethylamine                   | C7H17N            | 15.201               | 115.22         | 75.17      |
| 9     | Oxalic acid                          | $C_2H_2O_4$       | 16.531               | 90.03          | 68.62      |
| 10    | 1,2-Ethanediamine, N,N'-dimethyl-    | $C_4H_{12}N_2$    | 19.111               | 86.13          | 66.67      |
| 11    | 1-Octanamine, Nmethyl-               | $C_9H_21N$        | 20.889               | 143.27         | 70.25      |
| 12    | 1-Methyldodecylamine                 | $C_{13}H_{29}N$   | 22.139               | 199.38         | 71.87      |
| 13    | Methylpent-4-enylamine               | $C_6H_{13}N$      | 22.139               | 99.17          | 70.62      |
| 14    | 1-Dodecanol                          | $C_{12}H_{26}O$   | 22.340               | 186.33         | 89.34      |
| 15    | 1-Nonanol                            | $C_9H_{20}O$      | 22.632               | 144.25         | 70.08      |
| 16    | 1-Decanol                            | $C_{10}H_{22}O$   | 25.153               | 158.28         | 79.94      |
| 17    | Phenethylamine, p,α- dimethyl-       | $C_{10}H_{15}N$   | 25.821               | 149.23         | 81.23      |
| 18    | dl-Alanine                           | $C_3H_7NO_2$      | 27.709               | 89.09          | 79.27      |
| 19    | Dibutyl phthalate                    | $C_{16}H_{22}O_4$ | 27.827               | 278.34         | 87.97      |
| 20    | Phthalic acid, butyl hex- 3-yl ester | $C_{18}H_{26}O_4$ | 29.354               | 306.39         | 85.62      |
| 21    | Sarcosine ethyl ester hydrochloride  | $C_5H_{11}NO_2$   | 30.699               | 153.61         | 78.38      |

Table S5. List of various compounds identified with GC - MS analysis in untreated electroplating wastewater

Table S6. List of various compounds identified with GC - MS analysis in E-Fenton treated electroplating wastewater

| S.No. | Compound                                   | Formula           | Retention Time (min) | Molecular Mass | Matching % |
|-------|--------------------------------------------|-------------------|----------------------|----------------|------------|
| 1     | D-Allothreonine                            | $C_4H_9NO_3$      | 2.199                | 119.12         | 78.61      |
| 2     | 1,2-Dibutoxyethane                         | $C_{10}H_{22}O_2$ | 2.301                | 174.28         | 72.18      |
| 3     | Di-n-propyl ether                          | $C_6H_{14}O$      | 2.820                | 102.17         | 74.77      |
| 4     | Amphetamine                                | $C_9H_{13}N$      | 3.000                | 135.21         | 85.78      |
| 5     | 1-Propanamine, N,2-dimethyl                | $C_5H_{13}N$      | 9.517                | 87.163         | 75.23      |
| 6     | l-Alanine ethylamide                       | $C_5H_{12}N_2O$   | 11.211               | 187.24         | 81.17      |
| 7     | 1-Octanamine, N-methyl-                    | $C_9H_{21}N$      | 15.643               | 143.26         | 89.39      |
| 8     | 2-Butanamine, 3-methyl-                    | $C_5H_{13}N$      | 20.889               | 87.16          | 88.16      |
| 9     | 2-Heptanamine, 5-methyl-                   | $C_8H_{19}N$      | 21.634               | 129.25         | 77.02      |
| 10    | Amphetamine-3-methyl                       | $C_{10}H_{15}N$   | 25.826               | 149.23         | 77.37      |
| 11    | Benzenemethanol, $\alpha$ -(1-aminoethyl)- | $C_9H_{13}NO$     | 28.443               | 151.20         | 84.43      |
| 12    | Dibutyl phthalate                          | $C_{16}H_{22}O_4$ | 31.827               | 278.34         | 87.05      |