Supplementary Materials

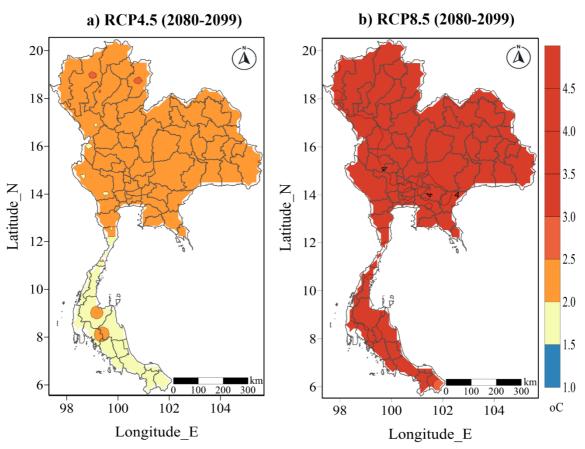


Fig. S1. Spatial maps of the ensemble mean of projected annual mean temperature under RCP4.5 and RCP8.5 scenarios over Thailand relative to pre-industrial values averaged from four downscaled climate models (CanESM2, GFDL-CM3, MIROC5 and NorESM1).

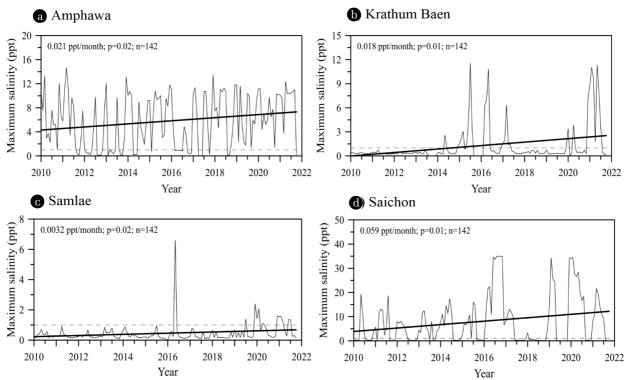


Fig. S2. Monthly maximum values of salinity at the selected stations located in the river mouths during 2010-2021. The Amphawa, Krathum Baen, Samlae and Saichon stations are located in the mouths of the Mae Klong River, Tha Chin River, Chao Phraya River, and Bang Pakong River, respectively.

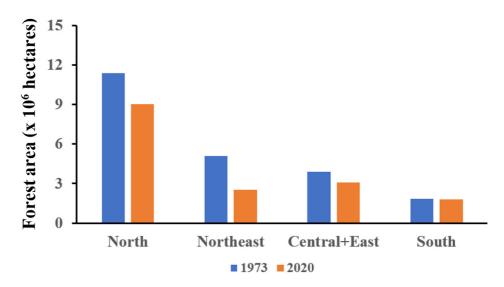


Fig. S3. Comparative changes in forest cover by regions between 1973 and 2020.

Table S1. Brief description of Atmosphere-Ocean General Circulation Models (AOGCMs) used in this study [1].

Research center	Model name Horizontal/vertical resolution				
		AGCM	OGCM		
Canadian Center for Climate Modelling and Analysi	s Second Generation Canadian Earth System Model (CanESM2)	T63, L35	256 x 192, L40		
NOAA Geophysical Fluid Dynamics Laboratory	Third Generation Coupled General Circulation Model of Geophysical Fluid Dynamics Laboratory (GFDL-CM3)		360 x 200, L50		
Atmosphere and Ocean Research Institute, National Fifth Generation Model for Interdisciplinary Research T85, L40 256 x 224, L50 Institute for Environmental Studies, and Japan on Climate (MIROC5) Agency for Marine-Earth Science and Technology					
Norwegian Climate Centre	Norwegian Earth System Model (NorESM1)	144 x 96, L26	6 384 x 320, L53		
AGCM= Atmospheric General Circulation Model	, OGCM=Ocean General Circulation Model				

Table S2. Details of selected real-time automatic water quality monitoring stations of the Pollution Control Department (PCD) used in this study.

Station number	Station name	River	Distance from the river mouth (km)	% missing data
1	Amphawa	Mekong River	17	23.0
2	Krathum Baen	Tha Chin River	41	15.1
3	Samlae	Chao Phraya River	96	16.8
4	Saichon	Bang Pakong River	63	19.9

Table S3. Types of climate according to De Martonne aridity index (DMI) values [2].

Climate types	DMI values (mm/°C)	
Semi-arid	$15 \le DMI \le 24$	
Moderately-arid (Mediterranean)	$24 < DMI \le 30$	
Slightly-arid	$30 < DMI \le 35$	
Moderately-humid	$35 < DMI \le 40$	
Humid	$40 < DMI \le 50$	
Very-humid	$50 < DMI \le 60$	
Excessively-humid	DMI > 60	

References

- 1. Chaowiwat W, Boonya-aroonnet S, Weesakul S. Impact of climate change assessment on agriculture water demand in Thailand. NUEJ. 2016;11:35-42. https://doi.org/10.14456/nuej.2016.6.
- 2. Pellicone G, Caloiero T, Guagliardi I. The De Martonne aridity index in Calabria (Southern Italy). *J. Maps.* 2019;15(2):788-796. https://doi.org/10.1080/17445647.2019.1673840.