Supplementary Materials

Multiphysics simulation details including initial conditions, boundary conditions, and simulation parameters are arranged in this supplementary data. **Table S1** summarizes the initial and boundary conditions applied in UV/H_2O_2 simulation. Parameters used in this simulation are listed in **Table S2**. To improve understanding, visualized simulation domains and boundaries of the UV/H_2O_2 reactor are shown in **Fig. S1**.

Table S1. Initial and boundary conditions for multiphysics simulations

 $-\mathbf{n}\cdot(-D_{\mathrm{P}1}\nabla G)=-\mathrm{q}_{\mathrm{r,net}},\,\mathrm{q}_{\mathrm{r,net}}=\frac{1}{2}(4\pi I_{\mathrm{b,w}}-G)\,(\mathrm{black\;wall})$

 $I_i = I_{\text{wall}}$

Initial conditions			
Equations	Location		
$\mathbf{u}_x = 0, \mathbf{u}_y = 0, \mathbf{u}_z = 0, p = 0$	at $\Omega_{ m fp}$		
$c = c_{0,i}$	at $\Omega_{ m fp}$		
GG_{i} (The blackbody radiative intensity at initial temperature)	at $\Omega_{ m pm}$		
Boundary conditions			
Equations	Location		
$\mathbf{u} \cdot \mathbf{n} = 0 \text{ (No slip)}$	at $\Omega_{ m pw}$		
$\mathbf{u} = -U_0 \mathbf{n}$ (Normal inflow velocity), $\mathbf{n} \cdot (\mathbf{J}_i + \mathbf{u} \mathbf{c}_i) = \mathbf{n} \cdot (\mathbf{u} \mathbf{c}_{\text{in},i})$	at Ω_{i1} and Ω_{i2}		
$[-nI + K]n = -n^{\wedge}_{0}n$, $n^{\wedge}_{0} < n_{0}$, $\forall k \cdot n = 0$, $\forall \epsilon \cdot n = 0$, $\mathbf{n} \cdot D_{i} \forall c_{i} = 0$	at Ω_{\circ}		

at Ω_{os}

at Ω_{l1} and Ω_{l2}

Table S2. Simulation parameters for multiphysics simulations (a: assumed, c: controlled, m: measured)

Description	Symbol	Value	Ref.
Temperature [K]	T	298.15	a
Fully developed inflow flow rate [L/min]	U_0	7	С
Density of liquid water [kg/m³]	p	1000	a
Viscosity of liquid water [Pa·s]	μ	0.001	a
Absorption coefficient [1/cm]	κ	0.05	a
Scattering coefficient [1/cm]	$\sigma_{_{S}}$	0.003	a
Boundary radiation intensity [W/(cm ² ×sr)]	$I_{\mathbf{wall}}$	1500	a
Initial concentration of H ₂ O ₂ [mg/L]	$c_{0,H2O2}$	15, 10, 7.5, 5, 2.5	С
Initial concentration of CO ₃ [mol/L]	c _{0,CO3}	1×10^{-16}	a
Initial concentration of CO ₃ ²⁻ [mol/L]	c _{0,CO32} -	2.91×10^{-7}	a
Initial concentration of caffeine [mol/L]	$c_{0,caffeine}$	1×10^{-5}	С
Initial concentration of DOC [mg/L]	$c_{0,DOC}$	4.5	m
Initial concentration of H ⁺ [mol/L]	$c_{0,H}$	1×10^{-7}	m
Initial concentration of H ₂ CO ₃ [mol/L]	c _{0,H2CO3}	1.119×10^{-4}	m
Initial concentration of HCO ₃ - [mol/L]	$c_{0,HCO3-}$	5.81×10^{-4}	a
Initial concentration of O ₂ [mol/L]	$c_{0,O2}$	2.656×10^{-4}	m
Initial concentration of OH [mol/L]	$c_{0,OH-}$	1×10^{-7}	m
Initial concentration of $pCBA$ [mol/L]	$c_{0,pCBA}$	1×10^{-5}	C
Inlet concentration of H ₂ O ₂ [mg/L]	$c_{\mathrm{in},H2O2}$	15, 10, 7.5, 5, 2.5	С
Inlet concentration of CO ₃ [mol/L]	$c_{\mathrm{in}{\it CO3}\cdot-}$	1×10^{-16}	a
Inlet concentration of CO ₃ ²⁻ [mol/L]	$c_{\mathrm{in}co32-}$	2.91×10^{-7}	a
Inlet concentration of caffeine [mol/L]	$c_{\mathrm{in},caffeine}$	1×10^{-5}	C
Inlet concentration of DOC [mg/L]	$c_{\mathrm{in},DOC}$	4.5	m
Inlet concentration of H ⁺ [mol/L]	$\mathrm{c}_{\mathrm{in},H}$	1×10^{-7}	m
Inlet concentration of H ₂ CO ₃ [mol/L]	$c_{\mathrm{in},H2CO3}$	1.119×10^{-4}	m
Inlet concentration of HCO ₃ [mol/L]	$c_{\mathrm{in},HCO3-}$	5.81×10^{-4}	a
Inlet concentration of O ₂ [mol/L]	c_{in,o_2}	2.656×10^{-4}	m
Inlet concentration of OH ⁻ [mol/L]	$c_{\mathrm{in},OH-}$	1×10^{-7}	m
Inlet concentration of $pCBA$ [mol/L]	$c_{\mathrm{in},p\mathit{CBA}}$	1×10^{-5}	C
Diffusivity of all chemical species [m ² /s]	D	1 × 10 ⁻⁹	a

(a)~(e): CFD and transport, (f)~(i): radiation

Fig. S1. Visualization of simulation domain and boundary of the UV/H₂O₂ reactor. The corresponding part is shown in purple: (a) flow path domain (Ω_{fp}) is the domain for the CFD and transport simulation. (b) pipe wall (Ω_{pw}), (c) inlet 1 (Ω_{11}), (d) inlet 2 (Ω_{12}), and (e) outlet (Ω_{o}) are the boundaries for the CFD and transport simulation. (f) participating medium (Ω_{pm}) is the domain for the radiation simulation. (g) opaque surface (Ω_{os}), (h) lamp 1 (Ω_{11}), and (i) lamp 2 (Ω_{12}) are the boundaries for the radiation simulation.

Fig. S2. H_2O_2 concentration change for (a) single injection and (b) two-step injection UV/H_2O_2 experiments. pCBA concentration change for (c) single injection and (d) two-step injection UV/H_2O_2 experiments ($[pCBA]_0 = 10$ uM).

Fig. S3. Experimental results vs. prediction values of caffeine abatement using pCBA degradation results and subsequent 'OH exposure calculations ([caffeine]₀ = 10 μ M).