Supplementary Materials Multiphysics simulation details including initial conditions, boundary conditions, and simulation parameters are arranged in this supplementary data. **Table S1** summarizes the initial and boundary conditions applied in UV/H_2O_2 simulation. Parameters used in this simulation are listed in **Table S2**. To improve understanding, visualized simulation domains and boundaries of the UV/H_2O_2 reactor are shown in **Fig. S1**. Table S1. Initial and boundary conditions for multiphysics simulations $-\mathbf{n}\cdot(-D_{\mathrm{P}1}\nabla G)=-\mathrm{q}_{\mathrm{r,net}},\,\mathrm{q}_{\mathrm{r,net}}=\frac{1}{2}(4\pi I_{\mathrm{b,w}}-G)\,(\mathrm{black\;wall})$ $I_i = I_{\text{wall}}$ | Initial conditions | | | | |---|------------------------------------|--|--| | Equations | Location | | | | $\mathbf{u}_x = 0, \mathbf{u}_y = 0, \mathbf{u}_z = 0, p = 0$ | at $\Omega_{ m fp}$ | | | | $c = c_{0,i}$ | at $\Omega_{ m fp}$ | | | | GG_{i} (The blackbody radiative intensity at initial temperature) | at $\Omega_{ m pm}$ | | | | Boundary conditions | | | | | Equations | Location | | | | $\mathbf{u} \cdot \mathbf{n} = 0 \text{ (No slip)}$ | at $\Omega_{ m pw}$ | | | | $\mathbf{u} = -U_0 \mathbf{n}$ (Normal inflow velocity), $\mathbf{n} \cdot (\mathbf{J}_i + \mathbf{u} \mathbf{c}_i) = \mathbf{n} \cdot (\mathbf{u} \mathbf{c}_{\text{in},i})$ | at Ω_{i1} and Ω_{i2} | | | | $[-nI + K]n = -n^{\wedge}_{0}n$, $n^{\wedge}_{0} < n_{0}$, $\forall k \cdot n = 0$, $\forall \epsilon \cdot n = 0$, $\mathbf{n} \cdot D_{i} \forall c_{i} = 0$ | at Ω_{\circ} | | | at Ω_{os} at Ω_{l1} and Ω_{l2} Table S2. Simulation parameters for multiphysics simulations (a: assumed, c: controlled, m: measured) | Description | Symbol | Value | Ref. | |---|----------------------------------|------------------------|------| | Temperature [K] | T | 298.15 | a | | Fully developed inflow flow rate [L/min] | U_0 | 7 | С | | Density of liquid water [kg/m³] | p | 1000 | a | | Viscosity of liquid water [Pa·s] | μ | 0.001 | a | | Absorption coefficient [1/cm] | κ | 0.05 | a | | Scattering coefficient [1/cm] | $\sigma_{_{S}}$ | 0.003 | a | | Boundary radiation intensity [W/(cm ² ×sr)] | $I_{\mathbf{wall}}$ | 1500 | a | | Initial concentration of H ₂ O ₂ [mg/L] | $c_{0,H2O2}$ | 15, 10, 7.5, 5, 2.5 | С | | Initial concentration of CO ₃ [mol/L] | c _{0,CO3} | 1×10^{-16} | a | | Initial concentration of CO ₃ ²⁻ [mol/L] | c _{0,CO32} - | 2.91×10^{-7} | a | | Initial concentration of caffeine [mol/L] | $c_{0,caffeine}$ | 1×10^{-5} | С | | Initial concentration of DOC [mg/L] | $c_{0,DOC}$ | 4.5 | m | | Initial concentration of H ⁺ [mol/L] | $c_{0,H}$ | 1×10^{-7} | m | | Initial concentration of H ₂ CO ₃ [mol/L] | c _{0,H2CO3} | 1.119×10^{-4} | m | | Initial concentration of HCO ₃ - [mol/L] | $c_{0,HCO3-}$ | 5.81×10^{-4} | a | | Initial concentration of O ₂ [mol/L] | $c_{0,O2}$ | 2.656×10^{-4} | m | | Initial concentration of OH [mol/L] | $c_{0,OH-}$ | 1×10^{-7} | m | | Initial concentration of $pCBA$ [mol/L] | $c_{0,pCBA}$ | 1×10^{-5} | C | | Inlet concentration of H ₂ O ₂ [mg/L] | $c_{\mathrm{in},H2O2}$ | 15, 10, 7.5, 5, 2.5 | С | | Inlet concentration of CO ₃ [mol/L] | $c_{\mathrm{in}{\it CO3}\cdot-}$ | 1×10^{-16} | a | | Inlet concentration of CO ₃ ²⁻ [mol/L] | $c_{\mathrm{in}co32-}$ | 2.91×10^{-7} | a | | Inlet concentration of caffeine [mol/L] | $c_{\mathrm{in},caffeine}$ | 1×10^{-5} | C | | Inlet concentration of DOC [mg/L] | $c_{\mathrm{in},DOC}$ | 4.5 | m | | Inlet concentration of H ⁺ [mol/L] | $\mathrm{c}_{\mathrm{in},H}$ | 1×10^{-7} | m | | Inlet concentration of H ₂ CO ₃ [mol/L] | $c_{\mathrm{in},H2CO3}$ | 1.119×10^{-4} | m | | Inlet concentration of HCO ₃ [mol/L] | $c_{\mathrm{in},HCO3-}$ | 5.81×10^{-4} | a | | Inlet concentration of O ₂ [mol/L] | c_{in,o_2} | 2.656×10^{-4} | m | | Inlet concentration of OH ⁻ [mol/L] | $c_{\mathrm{in},OH-}$ | 1×10^{-7} | m | | Inlet concentration of $pCBA$ [mol/L] | $c_{\mathrm{in},p\mathit{CBA}}$ | 1×10^{-5} | C | | Diffusivity of all chemical species [m ² /s] | D | 1 × 10 ⁻⁹ | a | (a)~(e): CFD and transport, (f)~(i): radiation Fig. S1. Visualization of simulation domain and boundary of the UV/H₂O₂ reactor. The corresponding part is shown in purple: (a) flow path domain (Ω_{fp}) is the domain for the CFD and transport simulation. (b) pipe wall (Ω_{pw}), (c) inlet 1 (Ω_{11}), (d) inlet 2 (Ω_{12}), and (e) outlet (Ω_{o}) are the boundaries for the CFD and transport simulation. (f) participating medium (Ω_{pm}) is the domain for the radiation simulation. (g) opaque surface (Ω_{os}), (h) lamp 1 (Ω_{11}), and (i) lamp 2 (Ω_{12}) are the boundaries for the radiation simulation. Fig. S2. H_2O_2 concentration change for (a) single injection and (b) two-step injection UV/H_2O_2 experiments. pCBA concentration change for (c) single injection and (d) two-step injection UV/H_2O_2 experiments ($[pCBA]_0 = 10$ uM). Fig. S3. Experimental results vs. prediction values of caffeine abatement using pCBA degradation results and subsequent 'OH exposure calculations ([caffeine]₀ = 10 μ M).