Supplementary Materials

Table S1. Frequency (in cm⁻¹) for the FTIR Absorption Bands Observed in CuHCF-II

v(CN) cm ⁻¹	δ(Fe-CN) cm ⁻¹	v(Fe-C) cm ⁻¹	v(OH) cm ⁻¹	δ(HOH) cm ⁻¹	References
2099.59	590	472	3609.12; 3452	1623.14	This study
2106	597	499	3621; 3506	1602	[1]

Table S2. The Physicochemical Characteristics of CuHCF-II

BET Surface Area	12.80 m ² /g
BJH Adsorption cumulative surface area of pores	11.657 m²/g
BJH Desorption cumulative surface area of pores	12.853 m²/g
BJH Adsorption cumulative volume of pores	0.101 cm ³ /g
BJH Adsorption average pore width (4V/A):	34.499 nm
BJH Desorption average pore width (4V/A):	31.466 nm

Table S3. Cs⁺ Adsorption Capacity of CuHCF-II at Different Temperatures From 298 To 348 K

C _i (mg/L) before ad- sorption	q _e at 298 (K) (mg g ⁻¹)	q₀ at 303 (K) (mg g⁻¹)	q _e at 318 (K) (mg g ⁻¹)	q _e at 333 (K) (mg g⁻¹)	q _e at 348 (K) (mg g⁻¹)
75	73.79 ± 1.12	73.54 ± 1.24	73.38 ± 1.24	72.82 ± 1.22	72.45 ± 2.11
100	98.13 ± 1.26	97.88 ± 1.26	97.72 ± 1.53	97.18 ± 1.43	96.75 ± 1.73
120	116.95 ± 1.85	116.71 ± 1.33	116.54 ± 2.11	116.03 ± 1.21	115.78 ± 2.27
145	139.82 ± 1.67	139.97 ± 1.73	139.41 ± 2.16	138.87 ± 1.88	138.48 ± 1.98
170	160.16 ± 1.32	159.91 ± 1.56	159.85 ± 1.77	159.24 ± 1.55	158.78 ± 2.65
200	184.69 ± 1.22	184.48 ± 1.19	184.28 ± 1.27	183.74 ± 1.27	173.35 ± 3.55
230	184.79 ± 1.14	184.57 ± 1.15	184.29 ± 1.29	183.90 ± 1.20	183.41 ± 2.11
250	185.19 ± 0.67	184.58 ± 2.56	184.38 ± 2.33	183.94 ± 2.22	183.44 ± 2.98

Table S4. Comparison of Cs⁺ Adsorption Capacities of Different Adsorbents

Adsorbent	pН	Maximum adsorption capacity (mg g ⁻¹)	References
CuHCF-II nanoparticles	6.0	197.72	This study
Zeolite A	6.0	208.7	[2]
Magnetic PB/GO	7.0	55.6	[3]
Graphene oxide/chitosan/potassium copper hexacyanoferrate (II) composite	6.5	64.7	[4]
Conjugate adsorbent	7.0	77.7	[1]
PB-sol and PB-insol	6.5	91.8	[5]
Trigonal Zinc hexacyanoferrate	6.0	190.52	[6]
Cobalt hexacyanoferrate nanoparticles	6.0	197.01	[7]

Table	S5.	Langmuir	And	Freundlich	Isotherm	Parameters	of Cs ⁺	Adsorbed by the	ne CuHCF-II	at The	Temperature	Ranges	From
		298 To 34	48K										

Temperature		Langmuir isotherm model					
	q _{max} (mg g ⁻¹)	$K_L(L mg^{-1})$	\mathbf{R}^2				
298 K	196.91	0.50	0.98				
303 K	196.78	0.46	0.98				
318 K	197.72	0.42	0.97				
333 K	197.18	0.33	0.96				
348 K	197.16	0.30	0.96				
Temperature		Freundlich isotherm model					
	$K_F\left(\frac{mg^{\left(1-\frac{1}{n}\right)}*L^{\frac{1}{n}}}{g}\right)$	1/n	\mathbf{R}^2				
298 K	95.17	0.18	0.92				
303 K	88.52	0.19	0.85				
318 K	92.71	0.18	0.87				
333 K	88.52	0.19	0.85				
348 K	82.87	0.21	0.82				

Table S6. Thermodynamic Parameters of Cs⁺ Adsorption by The CuHCF-II

T (K)	Kc	Ln(Kc)	K _L	1/T*1000	∆H⁰ (kJ mol ⁻¹)	∆S° (J mol ⁻¹)	∆G° (kJ mol ⁻¹)
298 (K)	3697357	15.12	0.50	3.36	- 8.28	96.21	-37.47
303 (K)	3368140	15.03	0.46	3.30			-37.86
318 (K)	3078559	14.94	0.42	3.14			-39.50
333 (K)	2460383	14.72	0.33	3.00			-40.74
348 (K)	2215749	14.61	0.30	2.87			-42.27

PFO model						
	$q_e (mg g^{-1})$	$k_1 (min^{-1})$	\mathbb{R}^2			
Cs^+	197.32	0.11	0.64			
PSO model						
	$q_e (mg g^{-1})$	k₂ (g/mg·min)	\mathbb{R}^2			
Cs^+	186.85	0.54	0.99			

References

- 1. Avila M, Reguera L, Rodríguez-Hernández J, Balmaseda J, Reguera E. Porous framework of T₂[Fe(CN)₆].xH₂O with T = Co, Ni, Cu, Zn, and H₂ storage. J Solid State Chem. 2008;181:2899–2907. https://doi.org/10.1016/j.jssc.2008.07.030.
- El-Kamash AM. Evaluation of zeolite A for the sorptive removal of Cs⁺ and Sr²⁺ ions from aqueous solutions using batch and fixed bed column operations. J. Hazard. Mater. 2008;151:432–445. https://doi.10.1016/j.jhazmat.2007.06.009.
- 3. Yang H, Sun L, Zhai J, Li H, Zhao Y, Yu H. In situ controllable synthesis of magnetic Prussian blue/graphene oxide nanocomposites for removal of radioactive cesium in water. J. Mater. Chem. A. 2014;2:326–332. https://doi.10.1039/c3ta13548a.
- 4. Tang XY, Wang SY, Zhang ZH, et al. Graphene oxide/Chitosan/potassium copper hexacyanoferrate(II) composite aerogel for efficient removal of cesium. *Chem. Eng. J.* 2022;444:136397. https://doi.org/10.1016/j.cej.2022.136397.
- 5. Nguyen MN, Muhammad Y, Kim S, Lee W. Optimization of cesium adsorption by Prussian blue using experiments and gene expression modeling. J. Water Process. Eng. 2021;41:102084. https://doi.org/10.1016/j.jwpe.2021.102084.
- 6. Trung ND, Ping N, Lan LTH, Dan HK. Synthesis, characterization, and caesium adsorbent application of trigonal zinc hexacyanoferrate (II) nanoparticles. J. Environ. Chem. Eng. 2021;9:106772. https://doi.org/10.1016/j.jece.2021.106772.
- 7. Trung ND, Ping N, Dan HK. Synthesis, characterization, and the effectiveness of cobalthexacyanoferrate nanoparticles in Cs⁺ adsorbent application. *Nanotechnol. Environ. Eng.* 2022;7:893–905. https://doi.org/10.1007/s41204-022-00265-x.