1. OECD. Annual Report on Sustainable Development Work in the OECD [Internet]. Paris: OECD; c2008. Available from: http://www.oecd.org/publishing/corrigenda
:
2. Singh RP, Sharma B, Sarkar A, Sengupta C, Singh P, Ibrahim MH. :Biological responses of agricultural soils to fly-ash amendment. Rev Environ Contam Toxicol. 2014;232:45–60.
3. Zou C, Zhao Q, Zhang G, Xiong B. :Energy revolution: From a fossil energy era to a new energy era. Natural Gas Ind B. 2016;3:1–11.
4. Srivastava V, Ismail SA, Singh P, Singh RP. :Urban solid waste management in the developing world with emphasis on India: challenges and opportunities. Rev Environ Sci Bio. 2015;14:317–337.
5. Vaish B, Singh P, Kothari R, Srivastava V, Singh PK, Singh RP. :The potential of bioenergy production from marginalized lands and its effect on climate change. Climate Change Environ Sustain. 2016;4:7–13.
6. Singh RP, Tyagi VV, Allen T, Ibrahim MH, Kothari R. :An overview for exploring the possibilities of energy generation from municipal solid waste (MSW) in Indian scenario. Renew Sustain Energ Rev. 2011;15:4797–4808.
7. Oyedepo SO. :Energy and sustainable development in Nigeria: the way forward. Energ Sustain Soc. 2012;2:15
8. Wang J, Zhao J, Deng S, et al. :Integrated assessment for solar-assisted carbon capture and storage power plant by adopting resilience thinking on energy system. J Clean Prod. 2019;208:1009–1021.
9. Vaish B, Singh P, Singh PK, Singh RP. :Biomethanation potential of Algal biomass. Springer International Publishing; 2017. p. 331–346.
10. Du C, Li Y, Zhao X, et al. :The production of ethanol from lignocellulosic biomass by Kluyveromyces marxianus CICC 1727–5 and Spathaspora passalidarum ATCC MYA-4345. Appl Microbiol Biot. 2019;103:1–11.
11. da Silva ARG, Errico M, Rong BG. :Systematic procedure and framework for synthesis and evaluation of bioethanol production processes from lignocellulosic biomass. Bioresour Technol Reports. 2018;4:29–39.
12. Bhatia L, Johri S, Ahmad R. :An economic and ecological perspective of ethanol production from renewable agro waste: A review. Amb Exp. 2012;2:65
13. Vaish B, Srivastava V, Singh P, Singh A, Singh PK, Singh RP. :Exploring untapped energy potential of urban solid waste. Energ Ecol Environ. 2016;1:323–342.
14. Ahuja D, Tatsutani M. :Sustainable energy for developing countries. SAPI EN S. 2009;2:1–16.
15. Mitchell P, Morgan J. :Employment and the circular economy job creation in a more resource efficient Britain [Internet]. London: Green Alliance; c2015. Available from: http://www.green-alliance.org.uk/resources/Employment%20and%20the%20circular%20economy.pdfMitchell
:
16. Mitchell P, Doherty M. :Job Creation in the circular economy-increasing resource efficiency in Northern Ireland. 2015. Available from Belfast: http://www.wrap.org.uk/sites/files/wrap/ReNEW%20CE%20Employment%20Report.pdf
:
17. Blades L, Morgana K, Douglas R, et al. :Circular Biogasbased Economy in a Rural Agricultural Setting. In : 1st International Conference on Sustainable Energy and Resource Use in Food Chains; 19–20 April 2017; Berkshire, UK.
18. Naik SN, Goud VV, Rout PK, Dalai AK. :Production of first- and second-generation biofuels: a comprehensive review. Renew Sust Energy Rev. 2010;14:578–597.
19. Kwon E, Jeon EC, Castaldi MJ, Jeon YJ. :Effect of carbon dioxide on the thermal degradation of lignocellulosic biomass. Environ Sci technol. 2013;47:10541–10547.
20. Anex RP, Lynd LR, Laser MS, Heggenstaller AH, Liebman M. :Potential for enhanced nutrient cycling through coupling of agricultural and bioenergy systems. Crop Sci. 2007;47:1327–1335.
21. Ramesh D, Muniraj IK, Thangavelu K, Karthikeyan S. :Chemicals and Fuels Production from Agro Residues: A Biorefinery Approach. 2019. Springer; Cham: 7:Srivastava N, Srivastava M, Mishra P, Upadhyay S, Ramteke P, Gupta V, editors:Sustainable Approaches for Biofuels Production Technologies. Biofuel and Biorefinery Technologies;
22. McKendry P. :Energy production from biomass (part 1): overview of biomass. Bioresour Technol. 2002;83:37–46.
23. Kim M, Day DF. :Composition of sugar cane, energy cane, and sweet sorghum suitable for ethanol production at Louisiana sugar mills. J Ind Microbiol Biot. 2011;38:803–807.
24. Prasad S, Singh A, Joshi HC. :Ethanol as an alternative fuel from agricultural, industrial and urban residues. Resour Conserv Recy. 2007;50:1–39.
25. Zhu Y, Lee YY, Elander RT. :Optimization of dilute- acid pretreatment of corn stover using a high-solids percolation reactor. Appl Biochem Biotech. 2005;124:1045–1054.
26. Malherbe S, Cloete TE. :Lignocellulose biodegradation: Fundamentals and applications. Rev Environ Sci Biol. 2002;1:105–114.
27. Howard RL, Abotsi ELJR, Van Rensburg EJ, Howard S. :Lignocellulose biotechnology: Issues of bioconversion and enzyme production. Afr J Biotechnol. 2003;2:602–619.
28. Guimarães JL, Frollini E, Da Silva CG, Wypych F, Satyanarayana KG. :Characterization of banana, sugarcane bagasse and sponge gourd fibers of Brazil. Ind Crop Prod. 2009;30:407–415.
29. John FMG, Medina PIV, Ruiz CAA. :Ethanol production of banana shell and cassava starch. Dyna Rev Fac Nac Minas. 2006;73:21–27.
30. Kwon EE, Jeon YJ, Yi H. :New candidate for biofuel feedstock beyond terrestrial biomass for thermo-chemical process (pyrolysis/gasification) enhanced by carbon dioxide (CO2). Bioresour Technol. 2012;123:673–677.
31. Beesley L, Moreno-Jiménez E, Gomez-Eyles JL, Harris E, Robinson B, Sizmur T. :A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils. Environ Pollut. 2011;159:3269–3282.
32. Balat M, Balat H. :Recent trends in global production and utilization of bio-ethanol fuel. Appl Energ. 2009;86:2273–2282.
33. Lin Y, Tanaka S. :Ethanol fermentation from biomass resources: current state and prospects. Appl Microbiol Biot. 2006;69:627–642.
34. Menon V, Rao M. :Trends in bioconversion of lignocellulose: biofuels, platform chemicals & biorefinery concept. Pro Energ Combust. 2012;38:522–550.
35. Schwarz WH, Gapes JR. :Butanol-rediscovering a renewable fuel. BioWorld Europe. 2006;1:16–19.
36. Gapes JR. :The economics of acetone-butanol fermentation: theoretical and market considerations. J Microbiol Biotech. 2000;2:27–32.
37. NRDC. Growing energy. How biofuels can help end America’s oil dependence [Internet]. New York: NRDC; c2004. Available from: http://www.bio.org/ind/Growing%20Energy.pdf
:
38. Balan V. :Current challenges in commercially producing biofuels from Lignocellulosic biomass. ISRN Biotechnol. 2014;
39. Go AW, Conag AT, Igdon RMB, Toledo AS, Malila JS. :Potentials of agricultural and agro-industrial crop residues for the displacement of fossil fuels: A Philippine context. Energ Strateg Rev. 2019;23:100–113.
40. REN21-Renewable Energy Policy Network for the 21st century [Internet].
http://www.ren21.net/REN21Activities/GlobalStatusReport.aspx
:
41. Mohr A, Raman S. :Lessons from first generation biofuels and implications for the sustainability appraisal of second-generation biofuels. Energ Policy. 2013;63:114–122.
42. Martin MA. :First generation biofuels compete. N Biotechnol. 2010;27:596–608.
43. Farrell AE, Brandt AR. :Risks of the oil transition. Environ Res Lett. 2006;1:14004
44. Algieri A, Andiloro S, Tamburino V, Zema DA. :The potential of agricultural residues for energy production in Calabria (Southern Italy). Renew Sust Ener Rev. 2019;104:1–14.
45. Fargione J, Hill J, Tilman D, Polasky S, Hawthorne P. :Land clearing and the biofuel carbon debt. Science. 2008;319:1235–1238.
46. Searchinger T, Heimlich R, Houghton RA, et al. :Use of US croplands for biofuels increases greenhouse gases through emissions from land-use change. Science. 2008;319:1238–1240.
47. Eggers J, TrÖltzsch K, Falcucci A, et al. :Is biofuel policy harming biodiversity in Europe? Gcb Bioenerg. 2009;1:18–34.
48. Lee J, Yang X, Cho SH, et al. :Pyrolysis process of agricultural waste using CO2 for waste management, energy recovery, and biochar fabrication. Appl Energ. 2017;185:214–222.
49. Hellmann F, Verburg PH. :Impact assessment of the European biofuel directive on land use and biodiversity. J Environ Manage. 2010;91:1389–1396.
50. Srivastava NSL, Narnaware SL, Makwana JP, Singh SN, Vahora S. :Investigating the energy use of vegetable market waste by briquetting. Renew Energ. 2014;6:270–275.
51. FitzPatrick M, Champagne P, Cunningham MF, Whitney RA. :A biorefinery processing perspective: treatment of lignocellulosic materials for the production of value-added products. Bioresour Technol. 2010;101:8915–8922.
52. Lipinsky ES. :Chemicals from biomass: Petrochemical substitution options. Science. 1981;212:1465–1471.
53. Frigon JC, Guiot SR. :Biomethane production from starch and lignocellulosic crops: A comparative review. Biofuel Bioprod Bior. 2010;4:447–458.
54. Vaish B, Sarkar A, Singh P, Singh PK, Sengupta C, Singh RP. :Prospects of Biomethanation in Indian Urban Solid Waste: Stepping Towards a Sustainable Future. 2016. Karthikeyan O, Heimann K, Muthu S, editors:Recycling of Solid Waste for Biofuels and Bio-chemicals Environmental Footprints and Eco-design of Products and Processes. Springer; Singapore:
55. Callaghan FJ, Wase DAJ, Thayanithy K, Forster CF. :Continuous co-digestion of cattle slurry with fruit and vegetable wastes and chicken manure. Biomass Bioenerg. 2002;22:71–77.
56. Zheng Y, Yu C, Cheng YS, Zhang R, Jenkins B, Vander Gheynst JS. :Effects of ensilage on storage and enzymatic degradability of sugar beet pulp. Bioresour Technol. 2011;102:1489–1495.
57. Sarkar P, Bosneaga E, Auer M. :Plant cell walls throughout evolution: towards a molecular understanding of their design principles. J Exp Bot. 2009;60:3615–3635.
58. Vaish B, Singh P, Srivastava V, Singh PK, Singh RP. :Municipal Solid Waste Management in India: Present Status and Energy Conversion Opportunities. 2016d. Singh DP, Kothari R, Tyagi VV, editors:Emerging Energy Alternatives for Sustainable Environment. New Delhi: TERI Press;
59. Bouallagui H, Lahdheb H, Romdan EB, Rachdi B, Hamdi M. :Improvement of fruit and vegetable waste anaerobic digestion performance and stability with co-substrates addition. J Environ Manage. 2009;90:1844–1849.
60. Dinuccio E, Balsari P, Gioelli F, Menardo S. :Evaluation of the biogas productivity potential of some Italian agro-industrial biomasses. Bioresour Technol. 2010;101:3780–3783.
61. Portugal-Pereira J, Soria R, Rathmann R, Schaeffer R, Szklo A. :Agricultural and agro-industrial residues-to-energy: Techno-economic and environmental assessment in Brazil. Biomass Bioenerg. 2015;81:521–533.
62. Piwowar A, Dzikuć M, Adamczyk J. :Agricultural biogas plants in Poland–selected technological, market and environmental aspects. Renew Sust Energ Rev. 2016;58:69–74.
63. Lebuhn M, Munk B, Effenberger M. :Agricultural biogas production in Germany-from practice to microbiology basics. Energ Sustain Soc. 2014;4:10
64. Hill DT, Bolte JP. :Methane production from low solid concentration liquid swine waste using conventional anaerobic fermentation. Bioresour Technol. 2000;74:241–247.
65. Vancanneyt M, De Vos P, Vennens L, De Ley J. :Lactate and ethanol dehydrogenase activities in continuous cultures of Clostridium thermosaccharolyticum LMG 6564. Microbiology. 1990;136:1945–1951.
66. Guerrero AB, Ballesteros I, Ballesteros M. :The potential of agricultural banana waste for bioethanol production. Fuel. 2018;213:176–185.
67. Evcan E, Tari C. :Production of bioethanol from apple pomace by using cocultures: Conversion of agro-industrial waste to value added product. Energy. 2015;88:775–782.
68. Domínguez-Bocanegra AR, Torres-Muñoz JA, López RA. :Production of bioethanol from agro-industrial wastes. Fuel. 2015;149:85–89.
69. Pareek D, Joshi A, Narnaware S, Verma VK. :Operational experience of agro-residue briquettes-based power generation system of 100 kW capacity. Int J Renew Energ Res. 2012;2:477–485.
70. Pongthornpruek S, Sasitharanuwat A. :The Utilization of bamboo residues and grease waste for charcoal briquette production. Applied Mechanics and Materials Trans Tech Publications. 2019;886:154–158.
71. Wilaipon P. :The effect of briquetting pressure on banana-peel briquette and the banana waste in Northern Thailand. Am J Appl Sci. 2008;6:167–171.
72. Cho SH, Lee J, Kim KH, Jeon YJ, Kwon EE. :Carbon dioxide assisted co-pyrolysis of coal and ligno-cellulosic biomass. Energ Convers Manage. 2016;118:243–252.
73. Roy MM, Corscadden KW. :An experimental study of combustion and emissions of biomass briquettes in a domestic wood stove. Appl Energ. 2012;99:206–212.
74. Rajaseenivasan T, Srinivasan V, Qadir GSM, Srithar K. :An investigation on the performance of sawdust briquette blending with neem powder. Alexandria Eng. 2016;55:2833–2838.
75. Romallosa ARD, Kraft E. :Feasibility of Biomass Briquette Production from Municipal Waste Streams by Integrating the Informal Sector in the Philippines. Resources. 2017;6:12
76. Wilson DC, Velis C, Cheeseman C. :Role of informal sector recycling in waste management in developing countries. Habitat Int. 2006;30:797–808.
77. Emerhi C. :Physical and combustion properties of briquettes produced from sawdust of three hardwood species and different organic binders. Adv Appl Sci Res. 2011;2:236–246.
78. Grover PD, Mishra SK, Clancy JS. :Development of an appropriate biomass briquetting technology suitable for production and use in developing countries. Energ Sustain Dev. 1994;1:45–48.
79. Yu H, Huang GH. :Effects of sodium as a pH control amendment on the composting of food waste. Bioresour Technol. 2009;100:2005–11.
80. Pilusa TJ, Huberts R, Muzenda E. :Low pressure binder-less densification of fibrous biomass material using a screw press. World Acad Sci Eng Technol. 2012;6:657–660.
81. McHenry MP. :Agricultural bio-char production, renewable energy generation and farm carbon sequestration in Western Australia: Certainty, uncertainty and risk. Agric Ecosyst Environ. 2009;129:1–7.
82. Guo XM, Trably E, Latrille E, Carrere H, Steyer JP. :Hydrogen production from agricultural waste by dark fermentation: A review. Int J Hydrogen Energ. 2010;35:10660–10673.
83. Brentner LB, Peccia J, Zimmerman JB. :Challenges in developing biohydrogen as a sustainable energy source: Implications for a research agenda. Environ Sci Technol. 2010;44:2243–2254.
84. Ivanova G, Rákhely G, Kovács KL. :Thermophilic biohydrogen production from energy plants by Caldicellulosiruptor saccharolyticus and comparison with related studies. Int J Hydrogen Energ. 2009;34:3659–3670.
85. Sovacool BK. :Energy policymaking in Denmark: Implications for global energy security and sustainability. Energ Policy. 2013;61:829–839.
86. Nath K, Muthukumar M, Kumar A, Das D. :Kinetics of two-stage fermentation process for the production of hydrogen. Int J Hydrogen Energ. 2008;33:1195–1203.
87. Karakashev D, Kotay SM, Trably E, Angelidaki I. :A strict anaerobic extreme thermophilic hydrogen-producing culture enriched from digested household waste. J Appl Microbiol. 2009;106:1041–1049.
88. Puyol D, Batstone DJ, Hülsen T, Astals S, Peces M, Krömer JO. :Resource recovery from wastewater by biological technologies: Opportunities, challenges, and prospects. Front Microbiol. 2017;7:2106
89. Chandrasekhar K, Lee YJ, Lee DW. :Biohydrogen production: Strategies to improve process efficiency through microbial routes. Int J Mol Sci. 2015;16:8266–8293.
90. Chandrasekhar K, Mohan SV. :Induced catabolic bio-electrohydrolysis of complex food waste by regulating external resistance for enhancing acidogenic biohydrogen production. Bioresour Technol. 2014;165:372–382.
91. Eddine BT, Salah MM. :Solid waste as renewable source of energy: Current and future possibility in Algeria. Int J Energy Environ Eng. 2012;3:1–12.
92. Khatiwada D, Seabra J, Silveira S, Walter A. :Power generation from sugarcane biomass-A complementary option to hydroelectricity in Nepal and Brazil. Energy. 2012;48:241–254.
93. Wiesenthal T, Mourelatou A, Petersen J. :How much bioenergy can Europe produce without harming the environment? EEA Report. 2006;
94. Münster M, Meibom P. :Optimization of use of waste in the future energy system. Energy. 2011;36:1612–1622.
95. Gadde B, Menke C, Wassmann R. :Rice straw as a renewable energy source in India, Thailand, and the Philippines: Overall potential and limitations for energy contribution and greenhouse gas mitigation. Biomass Bioenerg. 2009;33:1532–1546.
96. Mehta CM, Khunjar WO, Nguyen V, Tait S, Batstone DJ. :Technologies to recover nutrients from waste streams: A critical review. Crit Rev Env Sci Tec. 2015;45:385–427.
97. Woods J, Williams A, Hughes JK, Black M, Murphy R. :Energy and the food system. Philos T Roy Soc B. 2010;365:2991–3006.
98. Cordell D, Drangert JO, White S. :The story of phosphorus: Global food security and food for thought. Global Environ Chang. 2009;19:292–305.
99. Jasinski SM. :Phosphate rock US Geological Survey Mineral Commodity Summaries [Internet]. 2012. Available from: http://minerals.usgs.gov/minerals/pubs/commodity/phosphaterock/mcs-2012-phosp.pdf
:
100. Urrutia O, Erro J, Zabini A, et al. :New amphiphilic composite for preparing efficient coated potassium-fertilizers for top-dressing fertilization of annual crops. J Agric Food Chem. 2018;66:4787–4799.
101. Giacalone D, Wendin K, Kremer S, et al. :Health and quality of life in an aging population–Food and beyond. Food Qual Prefer. 2016;47:166–170.
102. Sharma B, Sarkar A, Singh P, Singh RP. :Agricultural utilization of biosolids: A review on potential effects on soil and plant grown. Waste Manage. 2017;64:117–132.
103. Verstraete W, Clauwaert P, Vlaeminck SE. :Used water and nutrients: Recovery perspectives in a ‘panta rhei’context. Bioresour Technol. 2016;215:199–208.
104. Carey DE, Yang Y, McNamara PJ, Mayer BK. :Recovery of agricultural nutrients from biorefineries. Bioresour Technol. 2016;215:186–198.
105. Rahgozar MA, Saberian M, Li J. :Soil stabilization with non-conventional eco-friendly agricultural waste materials: An experimental study. Transport Geotech. 2018;14:52–60.
106. Mor S, Chhoden K, Ravindra K. :Application of agro-waste rice husk ash for the removal of phosphate from the wastewater. J Clean Prod. 2016;129:673–680.
107. Cordell D, Rosemarin A, Schröder JJ, Smit AL. :Towards global phosphorus security: A systems framework for phosphorus recovery and reuse options. Chemosphere. 2011;84:747–758.
108. Siciliano A, Limonti C, Mehariya S, Molino A, Calabrò V. :Biofuel Production and Phosphorus Recovery through an Integrated Treatment of Agro-Industrial Waste. Sustainability. 2019;11:52
109. Batstone DJ, Hülsen T, Mehta CM, Keller J. :Platforms for energy and nutrient recovery from domestic wastewater: A review. Chemosphere. 2015;140:2–11.
110. Wang Y, Zheng SJ, Pei LY, Ke L, Peng DC, Xia SQ. :Nutrient release, recovery and removal from waste sludge of a biological nutrient removal system. Environ Technol. 2014;35:2734–2742.
111. Parsons SA, Smith JA. :Phosphorus removal and recovery from municipal wastewaters. Elements. 2008;4:109–112.
112. Li N, Wang X, Ren N, Zhang K, Kang H, You S. :Effects of solid retention time (SRT) on sludge characteristics in enhanced biological phosphorus removal (EBPR) reactor. Chem Biochem Eng Q. 2008;22:453–458.
113. Tarayre C, De Clercq L, Charlier R, et al. :New perspectives for the design of sustainable bioprocesses for phosphorus recovery from waste. Bioresour Technol. 2016;206:264–274.
114. Demirer S, Demirer GN, Chen S. :Ammonia removal from anaerobically digested dairy manure by struvite precipitation. Proc Biochem. 2005;40:3667–3674.
115. Shen Y, Ogejo JA, Bowers KE. :Abating the effects of calcium on struvite precipitation in liquid dairy manure. Trans ASABE. 2011;54:325–336.
116. Huang HM, Xiao XM, Yang LP, Yan B. :Removal of ammonium from rare-earth wastewater using natural brucite as a magnesium source of struvite precipitation. Water Sci Technol. 2011;63:468–474.
117. Liu Y, Kwag JH, Kim JH, Ra C. :Recovery of nitrogen and phosphorus by struvite crystallization from swine wastewater. Desalination. 2011;277:364–369.
118. Yetilmezsoy K, Sapci-Zengin Z. :Recovery of ammonium nitrogen from the effluent of UASB treating poultry manure wastewater by MAP precipitation as a slow release fertilizer. J Hazard Mater. 2009;166:260–269.
119. Prabhu M, Mutnuri S. :Cow urine as a potential source for struvite production. Int J Recycl Org Waste Agric. 2014;3:49
120. Kataki S, West H, Clarke M, Baruah DC. :Phosphorus recovery as struvite from farm, municipal and industrial waste: Feedstock suitability, methods and pre-treatments. Waste Manage. 2016;49:437–454.
121. Köse TE, Kıvanç B. :Adsorption of phosphate from aqueous solutions using calcined waste eggshell. Chem Eng J. 2011;178:34–39.
122. Szogi AA, Vanotti MB, Ro KS. :Methods for treatment of animal manures to reduce nutrient pollution prior to soil application. Curr Pollut Rep. 2015;1:47–56.
123. Siciliano A, Rosa SD. :Recovery of ammonia in digestates of calf manure through a struvite precipitation process using unconventional reagents. Environ Technol. 2014;35:841–850.
124. Qiu G, Ting YP. :Direct phosphorus recovery from municipal wastewater via osmotic membrane bioreactor (OMBR) for wastewater treatment. Bioresour Technol. 2014;170:221–229.
125. Padrino B, Lara-Serrano M, Morales-delaRosa S, et al. :Resource recovery potential from lignocellulosic feedstock upon lysis with ionic liquids. Front Bioeng Biotechnol. 2018;6:119
126. Yan F, Sun Y, Hui X, et al. :The effect of straw mulch on nitrogen, phosphorus and potassium uptake and use in hybrid rice. Paddy Water Environ. 2019;17:23–33.
127. Puyol D, Batstone DJ, Hülsen T, Astals S, Peces M, Krömer JO. :Resource recovery from wastewater by biological technologies: opportunities, challenges, and prospects. Front Microbiol. 2017;7:2106
128. Wilson RS, Schlea DA, Boles CM, Redder TM. :Using models of farmer behavior to inform eutrophication policy in the Great Lakes. Water Res. 2018;139:38–46.
129. Cottingham KL, Ewing HA, Greer ML, Carey CC, Weathers KC. :Cyanobacteria as biological drivers of lake nitrogen and phosphorus cycling. Ecosphere. 2015;6:1–19.
130. Capodaglio AG, Hlavínek P, Raboni M. :Physico-chemical technologies for nitrogen removal from wastewaters: A review. Rev Ambiente Agua. 2015;10:481–498.
131. Williams AT, Zitomer DH, Mayer BK. :Ion exchange- precipitation for nutrient recovery from dilute wastewater. Environ Sci Water Res Technol. 2015;1:832–838.
132. Samatya S, Kabay N, Yüksel Ü, Arda M, Yüksel M. :Removal of nitrate from aqueous solution by nitrate selective ion exchange resins. React Funct Polym. 2006;66:1206–1214.
133. Gohlke O, Weber T, Seguin P, Laborel Y. :A new process for NOx reduction in combustion systems for the generation of energy from waste. Waste Manage. 2010;30:1348–1354.
134. Fox MG, Keast A. :Effects of winterkill on population structure, body size, and prey consumption patterns of pumpkinseed in isolated beaver ponds. Can J Zool. 1990;68:2489–2498.
135. Ladd JN, Oades JM, Amato M. :Distribution and recovery of nitrogen from legume residues decomposing in soils sown to wheat in the field. Soil Biol Biochem. 1981;13:251–256.
136. Adeoye GO, Sridhar MKC, Ipinmoroti RR. :Potassium recovery from farm wastes for crop growth. Commun Soil Sci Plan. 2001;32:2347–2358.
137. Hanc A, Chadimova Z. :Nutrient recovery from apple pomace waste by vermicomposting technology. Bioresour Technol. 2014;168:240–244.
138. Swarnam TP, Velmurugan A, Pandey SK, Roy SD. :Enhancing nutrient recovery and compost maturity of coconut husk by vermicomposting technology. Bioresour Technol. 2016;207:76–84.
139. Aynehband A, Gorooei A, Moezzi AA. :Vermicompost: An eco-friendly technology for crop residue management in organic agriculture. Energ Proced. 2017;141:667–671.
140. Bolzonella D, Fatone F, Gottardo M, Frison N. :Nutrients recovery from anaerobic digestate of agro-waste: Techno-economic assessment of full-scale applications. J Environ Manage. 2018;216:111–119.
141. Gienau T, Brüß U, Kraume M, Rosenberger S. :Nutrient recovery from biogas digestate by optimised membrane treatment. Waste Biomass Valori. 2018;9:2337–2347.
142. Sharma K, Garg VK. :Comparative analysis of vermicompost quality produced from rice straw and paper waste employing earthworm Eisenia fetida (Sav.). Bioresour Technol. 2018;250:708–715.
143. Cofie O, Veenhuizen VR, de Vreede V, Maessen S. :Waste management for nutrient recovery: Options and challenges for urban agriculture. Urban Agric Magazine. 2010;23:3–7.
144. Adamtey N, Cofie O, Forster D. :An economic analysis of co-compost-fertilizer mixture (comlizer) use on maize production in the Accra plain of Ghana. 2009;Research Progress Report Submitted to IWMI and Eawag/Sandec. 10
145. Kemppainen AJ, Shonnard DR. :Comparative life-cycle assessments for biomass-to-ethanol production from different regional feedstocks. Biotechnol Progr. 2005;21:1075–1084.
146. Claassen PAM, Van Lier JB, Contreras AL, et al. :Utilisation of biomass for the supply of energy carriers. Appl Microbiol Biotechnol. 1999;52:741–755.
147. Galbe M, Zacchi G. :A review of the production of ethanol from softwood. Appl Microbiol Biotechnol. 2002;59:618–628.
148. Pan X, Arato C, Gilkes N, et al. :Biorefining of softwoods using ethanol organosolv pulping: Preliminary evaluation of process streams for manufacture of fuel-grade ethanol and co-products. Biotechnol Bioeng. 2005;90:473–481.
149. Dassanayake GDM, Kumar A. :Techno-economic assessment of triticale straw for power generation. Appl Energ. 2012;98:236–245.
150. Seabra JE, Tao L, Chum HL, Macedo IC. :A techno-economic evaluation of the effects of centralized cellulosic ethanol and co-products refinery options with sugarcane mill clustering. Biomass Bioenerg. 2010;34:1065–1078.
151. Yoosin S, Sorapipatana CA. :Study of ethanol production cost for gasoline substitution in Thailand and its competitiveness. Thammasat Int J Sci Technol. 2007;12:69–80.
152. Kojima M, Johnson T. :Potential for biofuels for transport in developing countries. 2005. Energy sector management assistance program. Joint UNDP/World Bank; Washington, D.C:
153. Mitchel D. :A note on rising food prices. 2008. World bank development prospects group, World Bank; Washington, DC:
154. Christensen K, Smith A. :The case for hemp as a biofuel. 2008. Vote Hemp Inc; Report. Brattleboro, VT:
155. Srivastava V, De Araujo ASF, Vaish B, Bartelt-Hunt S, Singh P, Singh RP. :Biological response of using municipal solid waste compost in agriculture as fertilizer supplement. Rev Environ Sci Biol. 2016;15:677–696.
156. Srivastava V, Gupta SK, Singh P, Sharma B, Singh RP. :Biochemical, physiological, and yield responses of lady’s finger (Abelmoschus esculentus L.) grown on varying ratios of municipal solid waste vermicompost. Int J Recycl Org Waste Agric. 2018;7:241–250.
157. Bekchanov M, Mirzabaev A. :Circular economy of composting in Sri Lanka: Opportunities and challenges for reducing waste related pollution and improving soil health. J Clean Prod. 2018;202:1107–1119.
158. Dockhorn T. :About the economy of phosphorus recovery. Mavinic D, Koch F, Ashley S, editors:London: IWA Publishing; 2009. p. 132–16.
159. Battistoni P, Bocadoro R, Fatone F, Pavan P. :Auto-nucleation and crystal growth of struvite in a demonstrative fluidized bed reactor (FBR). Environ Technol. 2005;26:975–982.
160. Blumenstein B, Bühle L, Wachendorf M, Möller D. :Economic assessment of the integrated generation of solid fuel and biogas from biomass (IFBB) in comparison to different energy recovery, animal-based and non-refining management systems. Bioresour Technol. 2012;119:312–323.
161. Cowburn G, Stockley L. :Consumer understanding and use of nutrition labelling: A systematic review. Public Health Nutr. 2005;8:21–28.
162. Mitchell C, Bauknecht D, Connor PM. :Effectiveness through risk reduction: A comparison of the renewable obligation in England and Wales and the feed-in system in Germany. Energ Policy. 2006;34:297–305.
163. Sawin J. :National policy instruments: Policy lessons for the advancement and diffusion of renewable energy technologies around the world. 2004. Thematic Background Paper. In : Proceedings of the International Conference for Renewables; Bonn.
164. Mendonça M, Tariffs FI. :Accelerating the deployment of renewable energy. London: Earthscan; 2007.
165. Butler L, Neuhoff K. :Comparison of feed-in tariff, quota and auction mechanisms to support wind power development. Renew Energ. 2008;33:1854–1867.
166. Langniss O, Wiser R. :The renewables portfolio standard in Texas: An early assessment. Energ policy. 2003;31:527–535.
167. Mitchell C. :The England and Wales non-fossil fuel obligation: History and lessons. Annu Rev Energ Environ. 2000;25:285–312.
168. Fischer C, Newell RG. :Environmental and technology policies for climate mitigation. J Environ Econ Manage. 2008;55:142–162.
169. Jaffe AB, Stavins RN. :Dynamic incentives of environmental regulations: The effects of alternative policy instruments on technology diffusion. J Environ Econ Manage. 1995;29:S43–S63.
170. Jaffe AB, Newell RG, Stavins RN. :Technological change and the environment. 2003. Maler KG, Vincent JR, editors:Handbook of Environmental Economics.
171. Popp D. :Induced innovation and energy prices. Am Econ Rev. 2002;92:160–180.
172. Klassen RD, Roberge PR, Lafront AM, Oteyaka MO, Ghali E. :Corrosion behaviour of zinc and aluminum magnesium alloys by scanning reference electrode technique (SRET) and electrochemical noise (EN). Can Metall Quart. 2005;44:47–52.