2. Singh RP, Sharma B, Sarkar A, Sengupta C, Singh P, Ibrahim MH. Biological responses of agricultural soils to fly-ash amendment. Rev Environ Contam Toxicol. 2014;232:45–60.
3. Zou C, Zhao Q, Zhang G, Xiong B. Energy revolution: From a fossil energy era to a new energy era. Natural Gas Ind B. 2016;3:1–11.
4. Srivastava V, Ismail SA, Singh P, Singh RP. Urban solid waste management in the developing world with emphasis on India: challenges and opportunities. Rev Environ Sci Bio. 2015;14:317–337.
5. Vaish B, Singh P, Kothari R, Srivastava V, Singh PK, Singh RP. The potential of bioenergy production from marginalized lands and its effect on climate change. Climate Change Environ Sustain. 2016;4:7–13.
6. Singh RP, Tyagi VV, Allen T, Ibrahim MH, Kothari R. An overview for exploring the possibilities of energy generation from municipal solid waste (MSW) in Indian scenario. Renew Sustain Energ Rev. 2011;15:4797–4808.
7. Oyedepo SO. Energy and sustainable development in Nigeria: the way forward. Energ Sustain Soc. 2012;2:15.
8. Wang J, Zhao J, Deng S, et al. Integrated assessment for solar-assisted carbon capture and storage power plant by adopting resilience thinking on energy system. J Clean Prod. 2019;208:1009–1021.
9. Vaish B, Singh P, Singh PK, Singh RP. Biomethanation potential of Algal biomass. Springer International Publishing; 2017. p. 331–346.
10. Du C, Li Y, Zhao X, et al. The production of ethanol from lignocellulosic biomass by Kluyveromyces marxianus CICC 1727–5 and Spathaspora passalidarum ATCC MYA-4345. Appl Microbiol Biot. 2019;103:1–11.
11. da Silva ARG, Errico M, Rong BG. Systematic procedure and framework for synthesis and evaluation of bioethanol production processes from lignocellulosic biomass. Bioresour Technol Reports. 2018;4:29–39.
12. Bhatia L, Johri S, Ahmad R. An economic and ecological perspective of ethanol production from renewable agro waste: A review. Amb Exp. 2012;2:65.
13. Vaish B, Srivastava V, Singh P, Singh A, Singh PK, Singh RP. Exploring untapped energy potential of urban solid waste. Energ Ecol Environ. 2016;1:323–342.
14. Ahuja D, Tatsutani M. Sustainable energy for developing countries. SAPI EN S. 2009;2:1–16.
17. Blades L, Morgana K, Douglas R, et al. Circular Biogasbased Economy in a Rural Agricultural Setting. In : 1st International Conference on Sustainable Energy and Resource Use in Food Chains; 19–20 April 2017; Berkshire, UK.
18. Naik SN, Goud VV, Rout PK, Dalai AK. Production of first- and second-generation biofuels: a comprehensive review. Renew Sust Energy Rev. 2010;14:578–597.
19. Kwon E, Jeon EC, Castaldi MJ, Jeon YJ. Effect of carbon dioxide on the thermal degradation of lignocellulosic biomass. Environ Sci technol. 2013;47:10541–10547.
20. Anex RP, Lynd LR, Laser MS, Heggenstaller AH, Liebman M. Potential for enhanced nutrient cycling through coupling of agricultural and bioenergy systems. Crop Sci. 2007;47:1327–1335.
21. Ramesh D, Muniraj IK, Thangavelu K, Karthikeyan S. Chemicals and Fuels Production from Agro Residues: A Biorefinery Approach. 2019. Springer; Cham: 7:Srivastava N, Srivastava M, Mishra P, Upadhyay S, Ramteke P, Gupta V, editorsSustainable Approaches for Biofuels Production Technologies. Biofuel and Biorefinery Technologies;
22. McKendry P. Energy production from biomass (part 1): overview of biomass. Bioresour Technol. 2002;83:37–46.
23. Kim M, Day DF. Composition of sugar cane, energy cane, and sweet sorghum suitable for ethanol production at Louisiana sugar mills. J Ind Microbiol Biot. 2011;38:803–807.
24. Prasad S, Singh A, Joshi HC. Ethanol as an alternative fuel from agricultural, industrial and urban residues. Resour Conserv Recy. 2007;50:1–39.
25. Zhu Y, Lee YY, Elander RT. Optimization of dilute- acid pretreatment of corn stover using a high-solids percolation reactor. Appl Biochem Biotech. 2005;124:1045–1054.
26. Malherbe S, Cloete TE. Lignocellulose biodegradation: Fundamentals and applications. Rev Environ Sci Biol. 2002;1:105–114.
27. Howard RL, Abotsi ELJR, Van Rensburg EJ, Howard S. Lignocellulose biotechnology: Issues of bioconversion and enzyme production. Afr J Biotechnol. 2003;2:602–619.
28. Guimarães JL, Frollini E, Da Silva CG, Wypych F, Satyanarayana KG. Characterization of banana, sugarcane bagasse and sponge gourd fibers of Brazil. Ind Crop Prod. 2009;30:407–415.
29. John FMG, Medina PIV, Ruiz CAA. Ethanol production of banana shell and cassava starch. Dyna Rev Fac Nac Minas. 2006;73:21–27.
30. Kwon EE, Jeon YJ, Yi H. New candidate for biofuel feedstock beyond terrestrial biomass for thermo-chemical process (pyrolysis/gasification) enhanced by carbon dioxide (CO2). Bioresour Technol. 2012;123:673–677.
31. Beesley L, Moreno-Jiménez E, Gomez-Eyles JL, Harris E, Robinson B, Sizmur T. A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils. Environ Pollut. 2011;159:3269–3282.
32. Balat M, Balat H. Recent trends in global production and utilization of bio-ethanol fuel. Appl Energ. 2009;86:2273–2282.
33. Lin Y, Tanaka S. Ethanol fermentation from biomass resources: current state and prospects. Appl Microbiol Biot. 2006;69:627–642.
34. Menon V, Rao M. Trends in bioconversion of lignocellulose: biofuels, platform chemicals & biorefinery concept. Pro Energ Combust. 2012;38:522–550.
35. Schwarz WH, Gapes JR. Butanol-rediscovering a renewable fuel. BioWorld Europe. 2006;1:16–19.
36. Gapes JR. The economics of acetone-butanol fermentation: theoretical and market considerations. J Microbiol Biotech. 2000;2:27–32.
38. Balan V. Current challenges in commercially producing biofuels from Lignocellulosic biomass. ISRN Biotechnol. 2014;
39. Go AW, Conag AT, Igdon RMB, Toledo AS, Malila JS. Potentials of agricultural and agro-industrial crop residues for the displacement of fossil fuels: A Philippine context. Energ Strateg Rev. 2019;23:100–113.
41. Mohr A, Raman S. Lessons from first generation biofuels and implications for the sustainability appraisal of second-generation biofuels. Energ Policy. 2013;63:114–122.
42. Martin MA. First generation biofuels compete. N Biotechnol. 2010;27:596–608.
43. Farrell AE, Brandt AR. Risks of the oil transition. Environ Res Lett. 2006;1:14004.
44. Algieri A, Andiloro S, Tamburino V, Zema DA. The potential of agricultural residues for energy production in Calabria (Southern Italy). Renew Sust Ener Rev. 2019;104:1–14.
45. Fargione J, Hill J, Tilman D, Polasky S, Hawthorne P. Land clearing and the biofuel carbon debt. Science. 2008;319:1235–1238.
46. Searchinger T, Heimlich R, Houghton RA, et al. Use of US croplands for biofuels increases greenhouse gases through emissions from land-use change. Science. 2008;319:1238–1240.
47. Eggers J, TrÖltzsch K, Falcucci A, et al. Is biofuel policy harming biodiversity in Europe? Gcb Bioenerg. 2009;1:18–34.
48. Lee J, Yang X, Cho SH, et al. Pyrolysis process of agricultural waste using CO2 for waste management, energy recovery, and biochar fabrication. Appl Energ. 2017;185:214–222.
49. Hellmann F, Verburg PH. Impact assessment of the European biofuel directive on land use and biodiversity. J Environ Manage. 2010;91:1389–1396.
50. Srivastava NSL, Narnaware SL, Makwana JP, Singh SN, Vahora S. Investigating the energy use of vegetable market waste by briquetting. Renew Energ. 2014;6:270–275.
51. FitzPatrick M, Champagne P, Cunningham MF, Whitney RA. A biorefinery processing perspective: treatment of lignocellulosic materials for the production of value-added products. Bioresour Technol. 2010;101:8915–8922.
52. Lipinsky ES. Chemicals from biomass: Petrochemical substitution options. Science. 1981;212:1465–1471.
53. Frigon JC, Guiot SR. Biomethane production from starch and lignocellulosic crops: A comparative review. Biofuel Bioprod Bior. 2010;4:447–458.
54. Vaish B, Sarkar A, Singh P, Singh PK, Sengupta C, Singh RP. Prospects of Biomethanation in Indian Urban Solid Waste: Stepping Towards a Sustainable Future. 2016. Karthikeyan O, Heimann K, Muthu S, editorsRecycling of Solid Waste for Biofuels and Bio-chemicals Environmental Footprints and Eco-design of Products and Processes. Springer; Singapore:
55. Callaghan FJ, Wase DAJ, Thayanithy K, Forster CF. Continuous co-digestion of cattle slurry with fruit and vegetable wastes and chicken manure. Biomass Bioenerg. 2002;22:71–77.
56. Zheng Y, Yu C, Cheng YS, Zhang R, Jenkins B, Vander Gheynst JS. Effects of ensilage on storage and enzymatic degradability of sugar beet pulp. Bioresour Technol. 2011;102:1489–1495.
57. Sarkar P, Bosneaga E, Auer M. Plant cell walls throughout evolution: towards a molecular understanding of their design principles. J Exp Bot. 2009;60:3615–3635.
58. Vaish B, Singh P, Srivastava V, Singh PK, Singh RP. Municipal Solid Waste Management in India: Present Status and Energy Conversion Opportunities. 2016d. Singh DP, Kothari R, Tyagi VV, editorsEmerging Energy Alternatives for Sustainable Environment. New Delhi: TERI Press;
59. Bouallagui H, Lahdheb H, Romdan EB, Rachdi B, Hamdi M. Improvement of fruit and vegetable waste anaerobic digestion performance and stability with co-substrates addition. J Environ Manage. 2009;90:1844–1849.
60. Dinuccio E, Balsari P, Gioelli F, Menardo S. Evaluation of the biogas productivity potential of some Italian agro-industrial biomasses. Bioresour Technol. 2010;101:3780–3783.
61. Portugal-Pereira J, Soria R, Rathmann R, Schaeffer R, Szklo A. Agricultural and agro-industrial residues-to-energy: Techno-economic and environmental assessment in Brazil. Biomass Bioenerg. 2015;81:521–533.
62. Piwowar A, Dzikuć M, Adamczyk J. Agricultural biogas plants in Poland–selected technological, market and environmental aspects. Renew Sust Energ Rev. 2016;58:69–74.
63. Lebuhn M, Munk B, Effenberger M. Agricultural biogas production in Germany-from practice to microbiology basics. Energ Sustain Soc. 2014;4:10.
64. Hill DT, Bolte JP. Methane production from low solid concentration liquid swine waste using conventional anaerobic fermentation. Bioresour Technol. 2000;74:241–247.
65. Vancanneyt M, De Vos P, Vennens L, De Ley J. Lactate and ethanol dehydrogenase activities in continuous cultures of Clostridium thermosaccharolyticum LMG 6564. Microbiology. 1990;136:1945–1951.
66. Guerrero AB, Ballesteros I, Ballesteros M. The potential of agricultural banana waste for bioethanol production. Fuel. 2018;213:176–185.
67. Evcan E, Tari C. Production of bioethanol from apple pomace by using cocultures: Conversion of agro-industrial waste to value added product. Energy. 2015;88:775–782.
68. Domínguez-Bocanegra AR, Torres-Muñoz JA, López RA. Production of bioethanol from agro-industrial wastes. Fuel. 2015;149:85–89.
69. Pareek D, Joshi A, Narnaware S, Verma VK. Operational experience of agro-residue briquettes-based power generation system of 100 kW capacity. Int J Renew Energ Res. 2012;2:477–485.
70. Pongthornpruek S, Sasitharanuwat A. The Utilization of bamboo residues and grease waste for charcoal briquette production. Applied Mechanics and Materials Trans Tech Publications. 2019;886:154–158.
71. Wilaipon P. The effect of briquetting pressure on banana-peel briquette and the banana waste in Northern Thailand. Am J Appl Sci. 2008;6:167–171.
72. Cho SH, Lee J, Kim KH, Jeon YJ, Kwon EE. Carbon dioxide assisted co-pyrolysis of coal and ligno-cellulosic biomass. Energ Convers Manage. 2016;118:243–252.
73. Roy MM, Corscadden KW. An experimental study of combustion and emissions of biomass briquettes in a domestic wood stove. Appl Energ. 2012;99:206–212.
74. Rajaseenivasan T, Srinivasan V, Qadir GSM, Srithar K. An investigation on the performance of sawdust briquette blending with neem powder. Alexandria Eng. 2016;55:2833–2838.
75. Romallosa ARD, Kraft E. Feasibility of Biomass Briquette Production from Municipal Waste Streams by Integrating the Informal Sector in the Philippines. Resources. 2017;6:12.
76. Wilson DC, Velis C, Cheeseman C. Role of informal sector recycling in waste management in developing countries. Habitat Int. 2006;30:797–808.
77. Emerhi C. Physical and combustion properties of briquettes produced from sawdust of three hardwood species and different organic binders. Adv Appl Sci Res. 2011;2:236–246.
78. Grover PD, Mishra SK, Clancy JS. Development of an appropriate biomass briquetting technology suitable for production and use in developing countries. Energ Sustain Dev. 1994;1:45–48.
79. Yu H, Huang GH. Effects of sodium as a pH control amendment on the composting of food waste. Bioresour Technol. 2009;100:2005–11.
80. Pilusa TJ, Huberts R, Muzenda E. Low pressure binder-less densification of fibrous biomass material using a screw press. World Acad Sci Eng Technol. 2012;6:657–660.
81. McHenry MP. Agricultural bio-char production, renewable energy generation and farm carbon sequestration in Western Australia: Certainty, uncertainty and risk. Agric Ecosyst Environ. 2009;129:1–7.
82. Guo XM, Trably E, Latrille E, Carrere H, Steyer JP. Hydrogen production from agricultural waste by dark fermentation: A review. Int J Hydrogen Energ. 2010;35:10660–10673.
83. Brentner LB, Peccia J, Zimmerman JB. Challenges in developing biohydrogen as a sustainable energy source: Implications for a research agenda. Environ Sci Technol. 2010;44:2243–2254.
84. Ivanova G, Rákhely G, Kovács KL. Thermophilic biohydrogen production from energy plants by Caldicellulosiruptor saccharolyticus and comparison with related studies. Int J Hydrogen Energ. 2009;34:3659–3670.
85. Sovacool BK. Energy policymaking in Denmark: Implications for global energy security and sustainability. Energ Policy. 2013;61:829–839.
86. Nath K, Muthukumar M, Kumar A, Das D. Kinetics of two-stage fermentation process for the production of hydrogen. Int J Hydrogen Energ. 2008;33:1195–1203.
87. Karakashev D, Kotay SM, Trably E, Angelidaki I. A strict anaerobic extreme thermophilic hydrogen-producing culture enriched from digested household waste. J Appl Microbiol. 2009;106:1041–1049.
88. Puyol D, Batstone DJ, Hülsen T, Astals S, Peces M, Krömer JO. Resource recovery from wastewater by biological technologies: Opportunities, challenges, and prospects. Front Microbiol. 2017;7:2106.
89. Chandrasekhar K, Lee YJ, Lee DW. Biohydrogen production: Strategies to improve process efficiency through microbial routes. Int J Mol Sci. 2015;16:8266–8293.
90. Chandrasekhar K, Mohan SV. Induced catabolic bio-electrohydrolysis of complex food waste by regulating external resistance for enhancing acidogenic biohydrogen production. Bioresour Technol. 2014;165:372–382.
91. Eddine BT, Salah MM. Solid waste as renewable source of energy: Current and future possibility in Algeria. Int J Energy Environ Eng. 2012;3:1–12.
92. Khatiwada D, Seabra J, Silveira S, Walter A. Power generation from sugarcane biomass-A complementary option to hydroelectricity in Nepal and Brazil. Energy. 2012;48:241–254.
93. Wiesenthal T, Mourelatou A, Petersen J. How much bioenergy can Europe produce without harming the environment? EEA Report. 2006;
94. Münster M, Meibom P. Optimization of use of waste in the future energy system. Energy. 2011;36:1612–1622.
95. Gadde B, Menke C, Wassmann R. Rice straw as a renewable energy source in India, Thailand, and the Philippines: Overall potential and limitations for energy contribution and greenhouse gas mitigation. Biomass Bioenerg. 2009;33:1532–1546.
96. Mehta CM, Khunjar WO, Nguyen V, Tait S, Batstone DJ. Technologies to recover nutrients from waste streams: A critical review. Crit Rev Env Sci Tec. 2015;45:385–427.
97. Woods J, Williams A, Hughes JK, Black M, Murphy R. Energy and the food system. Philos T Roy Soc B. 2010;365:2991–3006.
98. Cordell D, Drangert JO, White S. The story of phosphorus: Global food security and food for thought. Global Environ Chang. 2009;19:292–305.
100. Urrutia O, Erro J, Zabini A, et al. New amphiphilic composite for preparing efficient coated potassium-fertilizers for top-dressing fertilization of annual crops. J Agric Food Chem. 2018;66:4787–4799.
101. Giacalone D, Wendin K, Kremer S, et al. Health and quality of life in an aging population–Food and beyond. Food Qual Prefer. 2016;47:166–170.
102. Sharma B, Sarkar A, Singh P, Singh RP. Agricultural utilization of biosolids: A review on potential effects on soil and plant grown. Waste Manage. 2017;64:117–132.
103. Verstraete W, Clauwaert P, Vlaeminck SE. Used water and nutrients: Recovery perspectives in a ‘panta rhei’context. Bioresour Technol. 2016;215:199–208.
104. Carey DE, Yang Y, McNamara PJ, Mayer BK. Recovery of agricultural nutrients from biorefineries. Bioresour Technol. 2016;215:186–198.
105. Rahgozar MA, Saberian M, Li J. Soil stabilization with non-conventional eco-friendly agricultural waste materials: An experimental study. Transport Geotech. 2018;14:52–60.
106. Mor S, Chhoden K, Ravindra K. Application of agro-waste rice husk ash for the removal of phosphate from the wastewater. J Clean Prod. 2016;129:673–680.
107. Cordell D, Rosemarin A, Schröder JJ, Smit AL. Towards global phosphorus security: A systems framework for phosphorus recovery and reuse options. Chemosphere. 2011;84:747–758.
108. Siciliano A, Limonti C, Mehariya S, Molino A, Calabrò V. Biofuel Production and Phosphorus Recovery through an Integrated Treatment of Agro-Industrial Waste. Sustainability. 2019;11:52.
109. Batstone DJ, Hülsen T, Mehta CM, Keller J. Platforms for energy and nutrient recovery from domestic wastewater: A review. Chemosphere. 2015;140:2–11.
110. Wang Y, Zheng SJ, Pei LY, Ke L, Peng DC, Xia SQ. Nutrient release, recovery and removal from waste sludge of a biological nutrient removal system. Environ Technol. 2014;35:2734–2742.
111. Parsons SA, Smith JA. Phosphorus removal and recovery from municipal wastewaters. Elements. 2008;4:109–112.
112. Li N, Wang X, Ren N, Zhang K, Kang H, You S. Effects of solid retention time (SRT) on sludge characteristics in enhanced biological phosphorus removal (EBPR) reactor. Chem Biochem Eng Q. 2008;22:453–458.
113. Tarayre C, De Clercq L, Charlier R, et al. New perspectives for the design of sustainable bioprocesses for phosphorus recovery from waste. Bioresour Technol. 2016;206:264–274.
114. Demirer S, Demirer GN, Chen S. Ammonia removal from anaerobically digested dairy manure by struvite precipitation. Proc Biochem. 2005;40:3667–3674.
115. Shen Y, Ogejo JA, Bowers KE. Abating the effects of calcium on struvite precipitation in liquid dairy manure. Trans ASABE. 2011;54:325–336.
116. Huang HM, Xiao XM, Yang LP, Yan B. Removal of ammonium from rare-earth wastewater using natural brucite as a magnesium source of struvite precipitation. Water Sci Technol. 2011;63:468–474.
117. Liu Y, Kwag JH, Kim JH, Ra C. Recovery of nitrogen and phosphorus by struvite crystallization from swine wastewater. Desalination. 2011;277:364–369.
118. Yetilmezsoy K, Sapci-Zengin Z. Recovery of ammonium nitrogen from the effluent of UASB treating poultry manure wastewater by MAP precipitation as a slow release fertilizer. J Hazard Mater. 2009;166:260–269.
119. Prabhu M, Mutnuri S. Cow urine as a potential source for struvite production. Int J Recycl Org Waste Agric. 2014;3:49.
120. Kataki S, West H, Clarke M, Baruah DC. Phosphorus recovery as struvite from farm, municipal and industrial waste: Feedstock suitability, methods and pre-treatments. Waste Manage. 2016;49:437–454.
121. Köse TE, Kıvanç B. Adsorption of phosphate from aqueous solutions using calcined waste eggshell. Chem Eng J. 2011;178:34–39.
122. Szogi AA, Vanotti MB, Ro KS. Methods for treatment of animal manures to reduce nutrient pollution prior to soil application. Curr Pollut Rep. 2015;1:47–56.
123. Siciliano A, Rosa SD. Recovery of ammonia in digestates of calf manure through a struvite precipitation process using unconventional reagents. Environ Technol. 2014;35:841–850.
124. Qiu G, Ting YP. Direct phosphorus recovery from municipal wastewater via osmotic membrane bioreactor (OMBR) for wastewater treatment. Bioresour Technol. 2014;170:221–229.
125. Padrino B, Lara-Serrano M, Morales-delaRosa S, et al. Resource recovery potential from lignocellulosic feedstock upon lysis with ionic liquids. Front Bioeng Biotechnol. 2018;6:119.
126. Yan F, Sun Y, Hui X, et al. The effect of straw mulch on nitrogen, phosphorus and potassium uptake and use in hybrid rice. Paddy Water Environ. 2019;17:23–33.
127. Puyol D, Batstone DJ, Hülsen T, Astals S, Peces M, Krömer JO. Resource recovery from wastewater by biological technologies: opportunities, challenges, and prospects. Front Microbiol. 2017;7:2106.
128. Wilson RS, Schlea DA, Boles CM, Redder TM. Using models of farmer behavior to inform eutrophication policy in the Great Lakes. Water Res. 2018;139:38–46.
129. Cottingham KL, Ewing HA, Greer ML, Carey CC, Weathers KC. Cyanobacteria as biological drivers of lake nitrogen and phosphorus cycling. Ecosphere. 2015;6:1–19.
130. Capodaglio AG, Hlavínek P, Raboni M. Physico-chemical technologies for nitrogen removal from wastewaters: A review. Rev Ambiente Agua. 2015;10:481–498.
131. Williams AT, Zitomer DH, Mayer BK. Ion exchange- precipitation for nutrient recovery from dilute wastewater. Environ Sci Water Res Technol. 2015;1:832–838.
132. Samatya S, Kabay N, Yüksel Ü, Arda M, Yüksel M. Removal of nitrate from aqueous solution by nitrate selective ion exchange resins. React Funct Polym. 2006;66:1206–1214.
133. Gohlke O, Weber T, Seguin P, Laborel Y. A new process for NOx reduction in combustion systems for the generation of energy from waste. Waste Manage. 2010;30:1348–1354.
134. Fox MG, Keast A. Effects of winterkill on population structure, body size, and prey consumption patterns of pumpkinseed in isolated beaver ponds. Can J Zool. 1990;68:2489–2498.
135. Ladd JN, Oades JM, Amato M. Distribution and recovery of nitrogen from legume residues decomposing in soils sown to wheat in the field. Soil Biol Biochem. 1981;13:251–256.
136. Adeoye GO, Sridhar MKC, Ipinmoroti RR. Potassium recovery from farm wastes for crop growth. Commun Soil Sci Plan. 2001;32:2347–2358.
137. Hanc A, Chadimova Z. Nutrient recovery from apple pomace waste by vermicomposting technology. Bioresour Technol. 2014;168:240–244.
138. Swarnam TP, Velmurugan A, Pandey SK, Roy SD. Enhancing nutrient recovery and compost maturity of coconut husk by vermicomposting technology. Bioresour Technol. 2016;207:76–84.
139. Aynehband A, Gorooei A, Moezzi AA. Vermicompost: An eco-friendly technology for crop residue management in organic agriculture. Energ Proced. 2017;141:667–671.
140. Bolzonella D, Fatone F, Gottardo M, Frison N. Nutrients recovery from anaerobic digestate of agro-waste: Techno-economic assessment of full-scale applications. J Environ Manage. 2018;216:111–119.
141. Gienau T, Brüß U, Kraume M, Rosenberger S. Nutrient recovery from biogas digestate by optimised membrane treatment. Waste Biomass Valori. 2018;9:2337–2347.
142. Sharma K, Garg VK. Comparative analysis of vermicompost quality produced from rice straw and paper waste employing earthworm Eisenia fetida (Sav.). Bioresour Technol. 2018;250:708–715.
143. Cofie O, Veenhuizen VR, de Vreede V, Maessen S. Waste management for nutrient recovery: Options and challenges for urban agriculture. Urban Agric Magazine. 2010;23:3–7.
144. Adamtey N, Cofie O, Forster D. An economic analysis of co-compost-fertilizer mixture (comlizer) use on maize production in the Accra plain of Ghana. 2009;Research Progress Report Submitted to IWMI and Eawag/Sandec. 10.
145. Kemppainen AJ, Shonnard DR. Comparative life-cycle assessments for biomass-to-ethanol production from different regional feedstocks. Biotechnol Progr. 2005;21:1075–1084.
146. Claassen PAM, Van Lier JB, Contreras AL, et al. Utilisation of biomass for the supply of energy carriers. Appl Microbiol Biotechnol. 1999;52:741–755.
147. Galbe M, Zacchi G. A review of the production of ethanol from softwood. Appl Microbiol Biotechnol. 2002;59:618–628.
148. Pan X, Arato C, Gilkes N, et al. Biorefining of softwoods using ethanol organosolv pulping: Preliminary evaluation of process streams for manufacture of fuel-grade ethanol and co-products. Biotechnol Bioeng. 2005;90:473–481.
149. Dassanayake GDM, Kumar A. Techno-economic assessment of triticale straw for power generation. Appl Energ. 2012;98:236–245.
150. Seabra JE, Tao L, Chum HL, Macedo IC. A techno-economic evaluation of the effects of centralized cellulosic ethanol and co-products refinery options with sugarcane mill clustering. Biomass Bioenerg. 2010;34:1065–1078.
151. Yoosin S, Sorapipatana CA. Study of ethanol production cost for gasoline substitution in Thailand and its competitiveness. Thammasat Int J Sci Technol. 2007;12:69–80.
152. Kojima M, Johnson T. Potential for biofuels for transport in developing countries. 2005. Energy sector management assistance program. Joint UNDP/World Bank; Washington, D.C:
153. Mitchel D. A note on rising food prices. 2008. World bank development prospects group, World Bank; Washington, DC:
154. Christensen K, Smith A. The case for hemp as a biofuel. 2008. Vote Hemp Inc; Report. Brattleboro, VT:
155. Srivastava V, De Araujo ASF, Vaish B, Bartelt-Hunt S, Singh P, Singh RP. Biological response of using municipal solid waste compost in agriculture as fertilizer supplement. Rev Environ Sci Biol. 2016;15:677–696.
156. Srivastava V, Gupta SK, Singh P, Sharma B, Singh RP. Biochemical, physiological, and yield responses of lady’s finger (Abelmoschus esculentus L.) grown on varying ratios of municipal solid waste vermicompost. Int J Recycl Org Waste Agric. 2018;7:241–250.
157. Bekchanov M, Mirzabaev A. Circular economy of composting in Sri Lanka: Opportunities and challenges for reducing waste related pollution and improving soil health. J Clean Prod. 2018;202:1107–1119.
158. Dockhorn T. About the economy of phosphorus recovery. Mavinic D, Koch F, Ashley S, editorsLondon: IWA Publishing; 2009. p. 132–16.
159. Battistoni P, Bocadoro R, Fatone F, Pavan P. Auto-nucleation and crystal growth of struvite in a demonstrative fluidized bed reactor (FBR). Environ Technol. 2005;26:975–982.
160. Blumenstein B, Bühle L, Wachendorf M, Möller D. Economic assessment of the integrated generation of solid fuel and biogas from biomass (IFBB) in comparison to different energy recovery, animal-based and non-refining management systems. Bioresour Technol. 2012;119:312–323.
161. Cowburn G, Stockley L. Consumer understanding and use of nutrition labelling: A systematic review. Public Health Nutr. 2005;8:21–28.
162. Mitchell C, Bauknecht D, Connor PM. Effectiveness through risk reduction: A comparison of the renewable obligation in England and Wales and the feed-in system in Germany. Energ Policy. 2006;34:297–305.
163. Sawin J. National policy instruments: Policy lessons for the advancement and diffusion of renewable energy technologies around the world. 2004. Thematic Background Paper. In : Proceedings of the International Conference for Renewables; Bonn.
164. Mendonça M, Tariffs FI. Accelerating the deployment of renewable energy. London: Earthscan; 2007.
165. Butler L, Neuhoff K. Comparison of feed-in tariff, quota and auction mechanisms to support wind power development. Renew Energ. 2008;33:1854–1867.
166. Langniss O, Wiser R. The renewables portfolio standard in Texas: An early assessment. Energ policy. 2003;31:527–535.
167. Mitchell C. The England and Wales non-fossil fuel obligation: History and lessons. Annu Rev Energ Environ. 2000;25:285–312.
168. Fischer C, Newell RG. Environmental and technology policies for climate mitigation. J Environ Econ Manage. 2008;55:142–162.
169. Jaffe AB, Stavins RN. Dynamic incentives of environmental regulations: The effects of alternative policy instruments on technology diffusion. J Environ Econ Manage. 1995;29:S43–S63.
170. Jaffe AB, Newell RG, Stavins RN. Technological change and the environment. 2003. Maler KG, Vincent JR, editorsHandbook of Environmental Economics.
171. Popp D. Induced innovation and energy prices. Am Econ Rev. 2002;92:160–180.
172. Klassen RD, Roberge PR, Lafront AM, Oteyaka MO, Ghali E. Corrosion behaviour of zinc and aluminum magnesium alloys by scanning reference electrode technique (SRET) and electrochemical noise (EN). Can Metall Quart. 2005;44:47–52.