

Supplementary Materials

Ice bath cooling system Fig. S1 Drawing of the experimental setup for ENR deterioration.

Table S1 The corresponding calculation methods of ENR degradation

1 0	0
Calculation methods	Formula
ENR degradation efficiency (%)	$\frac{-C_0+C_l}{-C_0} \times 100\%$
Energy yield (G_{50} , mg (kWh) ⁻¹)	$\frac{0.5 VC_0}{fcst_{50}}$
Synergetic Factor (SF)	$\frac{K_{DBDP/PDS}}{K_{DBDP} + K_{PDS}}$
Input Power	$1/T \int_0^t U I dt = \frac{C}{T} \int_0^t U \frac{dU}{dt} dt = fc \notin U dU = fcs$
- 1 - 1	

where $C_0 \text{ (mg} \cdot L^{-1})$ ---initial concentration of ENR; $C_t \text{ (mg} L^{-1})$ ---the ENR concentration obtained after t min reaction; V (L) ---the solution volume; f (Hz) ---the applied discharge frequency; C (F) --- the internal sampling capacitance of the power supply; S --- the area of Lissajous figure; t_{50} (h) --- the time taken when 50% ENR is degraded (obtained from the kinetic analysis results of ENR degradation). $k_{DBDP+PDS}$ --- the kinetic constant of ENR degradation in the DBDP/PDS system; k_{DBDP} --- the kinetic constant of ENR degradation in the DBDP-alone system; k_{PDS} is the kinetic constant of ENR removal by the effect of PDS alone addition.

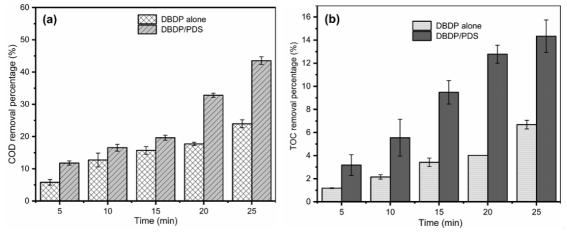
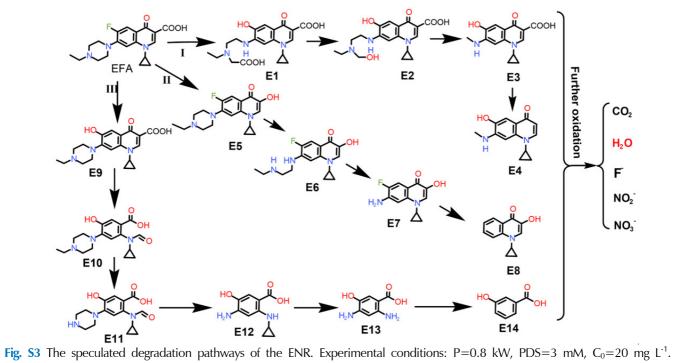



Fig. S2 COD and TOC removal (a) COD, (b) TOC. Experimental conditions: P=0.8 kW, PDS=3 mM, C₀=20 mg L⁻¹.

