

Supplementary Materials

Fig. S1. Different stages of leachate treatment

Fig. S2. Effect of pH and coagulant (Aluminum sulphate, Iron sulphate, Iron chloride) dosage in COD removal from synthetic leachate by coagulation/flocculation.

Fig. S3. The effect of time, and UV- PS/H2O2 process (Activated by UV (15 W), PS 2.5 g L⁻¹, H₂O₂ 1.5 g L⁻¹), and Heat- PS/H₂O₂ (Activated by Heat (65°C), PS 3 g L⁻¹, H₂O₂ 2 g L⁻¹) on leachate COD removal efficiency (SL2).

Fig. S4. Removal efficiency (%) of COD by three peroxides under various temperatures. (35°C, 50°C, 65°C, 80°C). The initiation concentration of COD is 5246±110 mg L⁻¹; the Optimized conditions (3 g L⁻¹ PS, 2 g L⁻¹ H₂O₂, pH 7, time 90 min).

Fig. S5. Comparison of removal of experimental variables from C-F/SF/AOP effluent, for different types of leachates using extended aeration-activated sludge treatment (EAAS). (HRT= 2 days, SRT= 23 days and 4 h aeration).

Fig. S6. Comparison of the removal efficiency of three different treatment processes used by the batch flow leachate treatment system (BFLTS) for four experimental variables in the treatment of various types of leachates.

Fig. S7. Effluent obtained from various treatment processes by batch flow leachate treatment system (BFLTS).

Component	Quantity per litre	
Acetic acid	7 mL	
Butyric acid	1 mL	
K_2HPO_4	30 mg	
NaCl	1440 mg	
KHCO3	312 mg	
$NaNO_3$	50 mg	
$MgSO_4$	156 mg	
Glucose	523 mg	
Urea	115 mg	
NaHCO ₃	3012 mg	
KOH	1920 mg	
NH_4Cl	520 mg	
NH_4HCO_3	2439 mg	
NaOH	Titrate to a pH of 6.4–8.5	
Fulvic acid	15 mg	
Humic acid	15 mg	
Trace metal solution (TMS)	1 mL	
Distilled Water	To make 1 L	
Composition of rare n	netal solution (TMS)	
FeSO_4	4000 mg	
H_3BO_4	50 mg	
As_2O	700 mg	
CdO	100 mg	
K_2CrO_4	500mg	
$HgSO_4$	100 mg	
Pb (NO ₃) ₂	200 mg	
$Cl_2Sn.2H_2O$	50 mg	
$ZnSO_4.7H_2O$	500 mg	
$CuSO_4.5H_2O$	150 mg	
MnSO ₄ .7H ₂ O	1000 mg	
$CoSO_4.7H_2O$	150 mg	
$NiSO_4.6H_2O$	500 mg	
H ₂ SO ₄ (96%)	1 mL	
Distilled Water	To make 1 L	

Table S1. Synthetic leachate's chemical composition

Table S2. General characteristics of the municipal solid waste leachate

		•					
Parameter	Winter			Summer			
	Young	Middle-aged	Elderly	Young	Middle-aged	Elderly	
COD (mg/L)	30591 ± 650	24680 ± 315	14800 ± 270	32810 ± 740	28375 ± 410	18541 ± 550	
BOD ₅ (mg/L)	11356 ± 420	7289 ± 380	2495 ± 110	14200 ± 1100	8950 ± 350	3635 ± 280	
BOD ₅ /COD ratio	0.37	0.29	0.16	0.43	0.31	0.19	
рН	6.2 ± 0.2	7.5 ± 0.03	8.2 ± 0.62	5.9 ± 0.21	7.2 ± 0.36	8 ± 0.03	
E.C. (µS/cm) (20 °C)	5720 ± 80	5180 ± 47	3261 ± 35	9204 ± 75	8697 ± 45	5712 ± 50	
TSS (mg/L)	6211 ± 90	4143 ± 76	3725 ± 58	5860 ± 65	3392 ± 50	1930 ± 42	
Turbidity (NTU)	749 ± 81	738 ± 38	692 ± 20	620 ± 73	580 ± 33	440 ± 20	
TKN (mg/L)	1836 ± 63	1048 ± 50	480 ± 28	1615 ± 50	950 ± 25	427 ± 16	
Colour	Dark brown	Black	Dark black	Dark brown	Black	Dark black	

Table S3. Efficacy of Batch-flow leachate treatment system (BFLTS) on COD, BOD, TKN, and Turbidity removal of actual leachate

Type RL	Parameter	Raw leachate	C-F/SF	UV- PS/H ₂ O ₂	EAAS
Young	COD (mg/L) (% removal)	32810 ± 740	13124±530 (60)	1863 ± 55 (85.8)	251 ± 20 (86.5)
	BOD (mg/L) (% removal)	14200 ± 1100	7455 ± 250 (47.5)	1140±20 (84.7)	104 ± 10 (90.8)
	BOD ₅ /COD ratio	0.43	0.56	0.62	0.41
	TKN (mg/L) (% removal)	1615 ± 50	1183 ± 15 (26.7)	479 ± 15 (59.4)	281 ± 10 (41.2)
	Turbidity (NTU) (% removal)	620±73	180±4 (71)	128±5 (28.5)	65±2 (48.7)
Middle-aged	COD (mg/L) (% removal)	28375 ± 410	12059 ± 150 (57.5)	1688±50 (86)	199 ± 20 (88.2)
	BOD (mg/L) (% removal)	8950 ± 350	5047 ± 280 (43.6)	943 ± 22 (81.3)	66 ± 8 (93)
	BOD ₅ /COD ratio	0.31	0.41	0.56	0.33
	TKN (mg/L) (% removal)	950 ± 25	746±20 (21.4)	341 ± 4 (54.2)	175±12 (48.7)
	Turbidity (NTU) (% removal)	580 ± 33	204 ± 5 (64.8)	161±5 (21)	78±9 (51.6)
Elderly	COD (mg/L) (% removal)	18541 ± 550	8565 ± 300 (53.8)	899 ± 25 (89.5)	135 ± 10 (85)
	BOD (mg/L) (% removal)	3635 ± 280	2948 ± 70 (18.9)	451 ± 15 (84.7)	52 ± 5 (88.4)
	BOD ₅ /COD ratio	0.19	0.34	0.5	0.38
	TKN (mg/L) (% removal)	427±16	367 ± 10 (14)	207 ± 5 (43.5)	80 ± 4 (61.4)
	Turbidity (NTU) (% removal)	440 ± 20	183±4 (58.3)	135 (25.8)	58 ± 2 (56.5)

Process	Experimental Conditions					Results	Reference
	Persulfate dosage	Catalytic dosage	Reaction time	$_{\rm pH}$	Temperature	Removal, %	
UV-activated PS/H ₂ O ₂	$2.5 \ g \ L^{-1} \ K_2 S_2 O_8$	$1.5 \text{ g } \text{L}^{-1} \text{ H}_2\text{O}_2 \text{ +}$	70	7.1	room (25 °C)	85, COD	This study
		15W UV					
Heat-activated PS/H ₂ O ₂	$3 g L^{-1} K_2 S_2 O_8$	$2 g L^{-1} H_2O_2$	90	6.8	65 °C	81, COD	This study
		+ 15W UV					
PS + AC	$0.81 \text{ g/L}^{-1} \text{ S}_2 \text{O}_8^{-2}$	0.75 g/L AC	4 h	6.7	150 °C	77.8, COD	[1]
UVSolar/O ₃ /H ₂ O ₂ /S ₂ O ₈ ⁻²	$0.2 \ g \ L^{-1} \ S_2 O_8^{-2}$	$0.67 \ g \ L^{-1} \ H_2O_2$	250 min	8	40 °C	96, COD	[2]
H_2O_2 - PS	PS/COD:12	$H_2O_2/COD=2$	85min	10.8	room (28 °C)	56.9, COD	[3]
Heat - PS	PS/COD:5.2	-	120 min	10.9	80 °C	93.5, COD	[3]
$PS+H_2O_2$	5.88 g S_2O_8 $^{-2}$	$8.63 \ g \ H_2O_2$	120 min	11	room (28 °C)	81, COD	[4]
UV-PMS	0.048 mol/ L^{-1} KHSO ₆	15W UV	60 min	7.5	room (25 °C)	37.39, COD	[5]
$UV-H_2O_2$	-	$0.048 \text{ mol/L}^{-1} \text{ H}_2\text{O}_2$	60 min	7.5	room (25 °C)	28.59, COD	[5]
		+ 15W UV					
UV-PMS/H ₂ O ₂	0.020 mol/L ⁻¹ PMS	$0.028 \text{ mol/L}^{-1} \text{ H}_2\text{O}_2$	60 min	7.5	room (25 °C)	30.51, COD	[5]
		+ 15W UV					
PDS/heat	PDS/12COD = 2	-	24h	4	50 °C	91% COD	[6]
PDS/heat	PDS/COD=5.2	-	120 min	10.9	80 °C	93.5% COD	[7]
PDS/heat/Ag(I)	PDS=112.5 g/L	Ag=0.25 g/L	30 min	-	80 °C	20% COD	[8]

Table S4. Comparison literature data of leachate treatment under different oxidation processes

References

- 1. Xu XY, Zeng GM, Peng YR, Zeng Z. Potassium persulfate promoted catalytic wet oxidation of fulvic acid as a model organic compound in landfill leachate with activated carbon. *Chem. Eng. J.* 2012;200:25-31. https://doi.org/10.1016/j.cej.2012.06.0291.
- 2. Poblete R, Oller I, Maldonado MI, Cortes E. Improved landfill leachate quality using ozone, UV solar radiation, hydrogen peroxide, persulfate and adsorption processes. J. Environ. Manage. 2019;232:45-51. https://doi.org/10.1016/j.jenvman.2018.11.030.
- 3. Guvenc SY. Optimization of COD removal from leachate nanofiltration concentrate using H2O2/Fe+ 2/heat-activated persulfate oxidation processes. *Process. Saf. Environ. Prot.* 2019;126:7-17. *https://doi.org/10.1016/j.psep.2019.03.034*.
- 4. Hilles AH, Amr SSA, Hussein RA, Arafa AI, El-Sebaie OD. Effect of persulfate and persulfate/H2O2 on biodegradability of an anaerobic stabilized landfill leachate. *Waste. Manag.* 2015;44:172-177. https://doi.org/10.1016/j.wasman.2015.07.046.
- Guo S, Wang Q, Luo C, Yao J, Qiu Z, Li Q. Hydroxyl radical-based and sulfate radical-based photocatalytic advanced oxidation processes for treatment of refractory organic matter in semi-aerobic aged refuse biofilter effluent arising from treating landfill leachate. *Chemosphere*. 2020;243:125390. *https://doi.org/10.1016/j.chemosphere.2019.125390*.
- Deng Y, Ezyske CM. Sulfate radical-advanced oxidation process (SR-AOP) for simultaneous removal of refractory organic contaminants and ammonia in landfill leachate. Water. Res. 2011;45(18):6189-6194. https://doi.org/10.1016/j.watres.2011.09.015.
- 7. Yazici Guvenc S. Optimization of COD removal from leachate nanofiltration concentrate using H2O2/Fe+2/heat Activated persulfate oxidation processes. *Process. Saf. Environ. Prot.* 2019;126:7-17. *https://doi.org/10.1016/j.psep.2019.03.034.*
- Genç N, Durna E. Simultaneous optimization of treatment efficiency and operating cost in leachate concentrate degradation by thermal-activated persulfate catalysed with Ag (I): comparison of microwave and conventional heating. J. Microw. Power. Electromagn. Energy. 2019;53(3):155-170. https://doi.org/10.1080/08327823.2019.1643652.