Supplementary Materials

Table S1. Effect of sulfur species on NO2 absorption in the FGD

Type of slurry	Type of additive	Main comment	References
Na ₂ SO ₃ (NH ₄) ₂ SO ₃		Sulfite is beneficial for NO_2 absorption. NH_4^+ can inhibit the dissolution of O_2 into water, so $(NH_4)_2SO_3$ solution has a higher NO_2 absorption rate compared with Na_2SO_3 solution.	Guo et al. [1]
$Na_2SO_3, \ Na_2S_2O_3, \ K_2SO_3, \ et \ al.$		An appropriate amount of SO_2 could promote the removal of NOx. O_2 exhibited an inhibition of NO_2 removal and a promotion of NO removal.	Hao et al. [2]
NaOH		Nitrite and nitrate produced by NOx absorption can be removed through a neutralization reaction with NaOH. Also, Na_2SO_3 produced by SO_2 absorption in NaOH increases NO_2 absorption.	Kang et al. [3]
Sodium humate solution		NO_2 improves the SO_2 absorption into the HA-Na solution because NO_2 may promote the oxidation of sulfite to sulfate.	Hu et al. [4]
Ca(OH) ₂ CaSO ₃		The negative effect of O_2 on NO_2 removal in the presence of SO_2 was due to the oxidization of $SO_3^{2^-}$ to $SO_4^{2^-}$.	Chen et al. [5]
CaSO_3	FeSO ₄ , MnSO ₄ , (NH ₄) ₂ SO ₄ , et al.	$S^{\rm IV}$ (HSO $_3^-,~SO_3^{\ 2^-})$ has a positive role in NO $_2$ removal efficiency.	Wang et al. [6]
CaSO_3	MgSO ₄ Na ₂ SO ₄ MgCl ₂	$_{4}^{0.0}$ promotes the capacity of dissolved suffice species, and natural MgSO ₃	
Ca(OH) ₂	Ca(NO ₃) ₂ Ca(NO ₂) ₂	The oxidation of sulfite to sulfate by NO_2 is in favor of the hydrolysis of SO_2 in the water film on the surface of the sorbent.	Gao et al. [8]
Sulfite Thiosulfate		${ m High\ NO_2}$ removal efficiencies could be maintained over extended periods of time because of thiosulfate, which inhibits sulfite oxidation.	Schmid et al. [9-10]

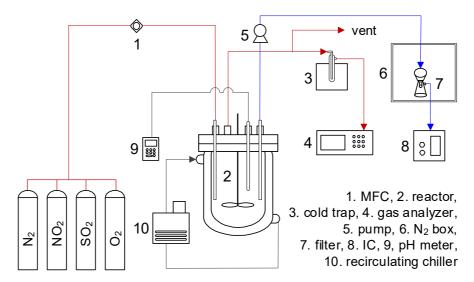


Fig. S1. Schematic diagram of the experimental setup.

Table S2. pKa and pKb values of organic additives at 25°C

organic acid	formula	рКа	pKb
formic acid	HCOOH	3.75	
acetic acid	CH₃COOH	4.76	
propionic acid	CH₃CH₂COOH	4.87	
triethanolamine	(HOCH ₂ CH ₂) ₃ N	7.74	6.26
diethanolamine	(HOCH₂CH₂)₂NH	8.88	5.12
monoethanolamine	HOCH ₂ CH ₂ NH ₂	9.50	4.50

References

- 1. Guo RT, Pan WG, Zhang XB, Ren JX, Jin Q, Xu HJ. Absorption of NO₂ into aqueous (NH₄)₂SO₃ solution in a stirred tank reactor. Environ. Prog. Sustain. Energy 2013;32:465-469. https://doi.org/10.1002/ep.11645
- 2. Hao R, Yang S, Zhao Y, Zhang Y, Yuan B, Mao X. Follow-up research of ultraviolet catalyzing vaporized H₂O₂ for simultaneous removal of SO₂ and NO: Absorption of NO₂ and NO by Na-based WFGD byproduct (Na₂SO₃). Fuel Process. Technol. 2017;160:64-69. https://doi.org/10.1016/j.fuproc.2017.02.021
- 3. Kang MS, Hwang J. Effect of SO₂ concentration on NOx removal efficiency in NaOH-based wet scrubbing. *J. Korean Soc. Atmos. Environ.* 2018;34:659-667. https://doi.org/10.5572/KOSAE.2018.34.5.659
- 4. Hu G, Sun Z, Gao H. Novel process of simultaneous removal of SO₂ and NO₂ by sodium humate solution. *Environ. Sci. Technol.* 2010;44:6712-6717. https://doi.org/10.1021/es101892r
- 5. Chen G, Gao J, Gao J, et al. Simultaneous removal of SO₂ and NOx by calcium hydroxide at low temperature: effect of SO₂ absorption on NO₂ removal. *Ind. Eng. Chem. Res.* 2010;49:12140-12147. https://doi.org/10.1021/ie101594x
- Wang Z, Zhang X, Zhou Z, Chen WY, Zhou J, Cen K. Effect of additive agents on the simultaneous absorption of NO₂ and SO₂ in the calcium sulfite slurry. Energy Fuels 2012;26:5583-5589. https://doi.org/10.1021/ef3007504
- 7. Tang N, Liu Y, Wang H, Xiao L, Wu Z. Enhanced absorption process of NO₂ in CaSO₃ slurry by the addition of MgSO₄. Chem. Eng. J. 2010;160:145-149. https://doi.org/10.1016/j.cej.2010.03.022
- 8. Gao J, Chen G, Fu X, Yin Y, Wu S, Qin Y. Enhancement mechanism of SO₂ removal with calcium hydroxide in the presence of NO₂. Korean J. Chem. Eng. 2012;29:263-269. https://doi.org/10.1007/s11814-011-0157-7
- 9. Schmid D, Hupa M, Paavola M, Vuorinen I, Lehikoinen A, Karlström O. Role of thiosulfate in NO₂ absorption in aqueous sulfite solutions. *Ind. Eng. Chem. Res.* 2023;62:105-110. https://doi.org/10.1021/acs.iecr.2c04299
- 10. Schmid D, Karlström O, Kuvaja V, Vuorinen I, Paavola M, Hupa M. Role of sulfite oxidation in NO_2 absorption in a pH-Neutral scrubber solution. *Energy Fuels* 2022;36:2666-2672. https://doi.org/10.1021/acs.energyfuels.1c03914