

Inhibiting oxidation and enhancing absorption characteristics of sodium sulfite for SO₂ removal from the non-ferrous smelting flue gas

Yongpeng Ma^{1†}, Dongli Yuan¹, Xiaojing Zhang¹, Zan Qu², Wenjun Huang²

¹Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou 450001, China

²School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

ABSTRACT

In this work, we investigated the absorption characteristics of SO_2 and the effect of inhibitors on the desulfurization performances of Na_2SO_3 . The results showed that the NO₂ had a competitive effect with SO₂ on SO₃² which resulted in a significant decrease in the absorption capacity of SO₂. O₂ in the flue gas could decrease the absorption capacity of SO₂ due to the oxidation of Na₂SO₃. Besides, Na₂S₂O₃ had more excellent inhibiting effect on the oxidation of SO_3^{22} ; the inhibition mechanism is understood on the basis of the free radical chain reaction, whereby $S_2O_3^{22}$ combined with the sulfite free radical to form an inert substance, thus, quenching the reaction of free radical with the dissolved oxygen and invariably inhibiting the oxidation of SO_3^{2} . Furthermore, the intrinsic and the apparent oxidation kinetics of Na_2SO_3 oxidation process with $Na_2S_2O_3$ were investigated to explain the relationships between consumption rates of SO_3^2 and the absorption capacities of SO_2 under different components in flue gas and absorption solution.

Keywords: Absorption characteristic, Desulfurization, Inhibiting oxidation, Smelting flue gas, Sodium sulfite

1. Introduction

The northern area of China has witnessed incessant haze pollution in recent years. This predominant in cities with high industrial activities, and occurs mainly during the winter or spring season [1-2]. The major component of haze is the particulate matter (PM). $PM_{2.5}$ (particulate matter with diameters less than 2.5 μ m) have more concentrations and it is more harmful to human health. this is mainly attributed to its small size which is an influential factor to visibility since mass extinction efficiency of PM_{2.5} is 7 times of larger particles. Moreover, the deterioration of air quality and haze episodes illustrates that PM_{2.5} plays a dominant role in the formation of smog [3-4]. The visible light absorption and scattering were affected by the gaseous pollutants in the air and the chemical compositions of $PM_{2.5}$ [5]. Sulfur dioxide (SO₂) is the primary haze pollutant and contributes significantly to the nucleation, toxicity, and complexity of $PM_{2.5}$ [6-8]; hence controlling its emission is

(cc) 🛈 🕲 BY NC

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which per-

mits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Copyright © 2021 Korean Society of Environmental Engineers

of paramount importance. Furthermore, it has been reported that sulfate, nitrate, and ammonium (SNA) which are referred to as secondary inorganic aerosols contribute to approximately 27 % of the PM_{2.5}.

To ensure that the SO₂ and NO_X emissions from flue gases are reduced to the barest minimum, the desulfurization and denitrification technologies in coal-fired power plants and the industrial boilers have been developed for years in compliance with the stringent emission standard [9-13]. However, the SO₂ emission from the non-ferrous metal smelting flue gas has received little attention in the past, hence, the control of SO₂ emission has not been optimized [14].

In a typical smelting process, a high concentration of SO_2 (> 4%) can be directly converted to sulfuric acid by double-conversion double-absorption (DCDA) process downstream of the dust removal devices and dynamic wave scrubbing units [15]. While for the SO_2 concentration in the range of 2 - 4% in flue gas, single-conversion single-absorption (SCSA) process is employed to produce

[†]Corresponding author

Email: mayongpeng1984@163.com

Tel: +86-150-0383-5272 Fax: +86-371-86609680

ORCID: 0000-0003-2983-9435

Received January 28, 2020 Accepted April 03, 2020

6N

sulfuric acid and the SO₂ in the exhaust gas can be absorbed by sodium hydroxide. However, when SO₂ in flue gas is lower than 2%, it cannot be used for the conversion of sulfuric acid due to its low concentration. Wet scrubbing technology using sodium hydroxide is adopted for desulfurization in these smelting factories. The concentration of SO₂ was still too high to be controlled, unlike the concentration of gases from coal-fired flue gas.

The use of sodium hydroxide, sodium citrate process, organic amine process, ionic liquid process, magnesium process, and sodium sulfite process for the removal of SO_2 from characteristics flue gas have been investigated and implemented, but these processes are not economical. Moreover, they lead to heavy metal pollution and hazardous waste generation [16-19]. Sodium sulfite process (Wellman-Lord Process) is one of the most efficient technique for the desulfurization and recovery of SO_2 , due to its relatively high efficiency and low energy consumption [20]. However, sodium sulfite process is offset by the reduction in the desulfurization efficiency, which is the consequence of Na_2SO_3 oxidation in the absorption solution. The following equations show the main absorption and oxidation processes of Na_2SO_3 [21]:

$$Na_{2}SO_{3} + SO_{2} + H_{2}O = 2NaHSO_{3(1)}$$
$$2Na_{2}SO_{3} + O_{2} = 2Na_{2}SO_{4(2)}$$
$$aHSO_{3} = 2Na_{2}SO_{4} + Na_{2}S_{2}O_{3} + 3H_{2}O + SO_{2(3)}$$

It was reported that the oxidation of sulfite was a free radical reaction. Sipos et al. [22] selected phenol as the appropriate inhibitor. However, phenol was not acceptable for real applications because it is also an environmental pollutant. Cui et al. reported that the hydroxyl functional group in TP (Tea Polyphenols) makes the ring become active and reductive, hence TP can be effectively used as an additive. The chain reaction of sulfite oxidation was broken and inhibited [23]. Wang et al. [24] studied the effect of ethanol on the oxidation of Na₂SO₃ and reported that ethanol inhibited the oxidation of sulfite. The mechanism of inhibition of sodium sulfite oxidation and the inhibition kinetics of sulfite oxidation by ethanol was proposed. However, previous studies primarily focused on selecting inhibitors of sulfite oxidation and investigating the inhibition mechanism, but they are not applicable in non-ferrous smelting industries. The selection and inhibition mechanism of complex flue gas with high concentrations of SO₂, NO_X, and O₂ is not fully understood, hence, it requires further studies. Besides, the relationships between desulfurization performances and the sodium sulfite added inhibitors are still ambiguous, and the effects of complex components in smelting flue gas on the inhibitors are not clear.

In this study, we investigated the absorption characteristics of SO_2 along with the intrinsic and apparent oxidation kinetics of $SO_3^{2^2}$ in the cyclic sodium sulfite absorption system. The related kinetic parameters and mechanism of inhibition oxidation were obtained by investigating the relationship between the consumption rate of $SO_3^{2^2}$ and the absorption time of SO_2 under different components in flue gas and absorption solution with $Na_2S_2O_3$ inhibitor. The results will provide a theoretical basis for SO_2 emission control and resource recovery from non-ferrous metal smelting flue gas.

2. Experimental Apparatus and Methods

2.1. Experimental Apparatus

A schematic diagram of the experimental apparatus was shown in Fig. S1 (as shown in supplementary material), and it is made up of the simulated flue gas distribution system, the absorption reaction system, the online monitoring system, and the exhaust gas treatment system. The simulated flue gas was supplied by the cylinders at a flow rate of 1.0 L/min. The components in flue gas were 5000 mg/m³ SO₂, 600 mg/m³ NO₂, 0 - 8 % O₂ and N₂ of the carrier gas. All the gases were controlled by mass flow meters. The SO₂ absorption experiments were carried out in a three-port bubbling reactor with 50 mL of 2 - 4% Na₂SO₃ solution. The temperatures of flue gas and absorption solution were 323K and 293 K, respectively. The flue gas from the outlet was continuously absorbed by 5% NaOH and 5% KMnO₄ solution so that the exhaust gas was purified and discharged.

The concentration of SO_2 and NO_X in the inlet and outlet of the reactor was monitored by a flue gas analyzer (Testo-350, Germany).

2.2. Materials

The main chemicals and consumables used in this study are stated below: sodium sulfite (99%), sodium thiosulfate (99%), sodium sulfate (98%), sodium nitrite (99%), anhydrous ethanol and triethanolamine from Sigma-Aldrich Co, Ltd. The SO₂ (5%), O₂ (99.9%), NO₂ (1%) and N₂ (99.9%) were obtained from Henan Yuanzheng Gas Co., Ltd and stored in cylinders.

2.3. Methods

The removal efficiencies of SO_2 were calculated by the following Eq. (4):

$$\eta_{\rm SO_2} = \frac{c_{\rm SO_2(i)} - c_{\rm SO_2(0)}}{c_{\rm SO_2(i)}} \times 100\%$$
(4)

Where η_{SO2} is the removal efficiency of SO₂, and C_{SO2(i)} and C_{SO2(O)} are the sulfur dioxide inlet concentration and outlet concentration, respectively.

The absorption capacities of SO_2 in Na_2SO_3 solution were calculated by integrating the absorption curve as shown in Eq. (5).

$$\tau = \frac{1}{V} \int_{t_2}^{t_1} (C_{(i)} - C_{(o)}) \times f \times dt$$
(5)

where τ is the absorption capacity of SO₂, and C_(i) and C_(o) are the concentrations of the SO₂ inlet and outlet, respectively. V is the volume of Na₂SO₃ solution. t₁ and t₂ are the starting and ending time of absorption, respectively. f is the flue gas flow.

The consumption of Na_2SO_3 was deduced from the Eq. (1) so that the utilization ratio of Na_2SO_3 was obtained by the following Eq. (6):

$$\eta_{1_{\text{Na}_2\text{SO}_3}} = \frac{m_{\text{Na}_2\text{SO}_3(c)}}{m_{\text{Na}_2\text{SO}_3(c)}} \times 100\%$$
(6)

where $\eta_{1Na2SO3}$ is the utilization ratio of sodium sulfite, and $m_{Na2SO3(t)}$

and $m_{Na2SO3(c)}$ are the total amount of sodium sulfite and the amount of sodium sulfite consumed by absorbing SO₂, respectively.

The intrinsic oxidation kinetics parameters and inhibition mechanism of Na_2SO_3 were obtained by the following methods. Na_2SO_3 reacted with dissolved oxygen according to the Eq. (7). The dissolved oxygen meter records the concentration of dissolved oxygen in solution. Compared with the initial concentration of SO_3^{-2} (C₂) and dissolved oxygen (C₃), the initial concentration of the inhibitor (C₁) is negligible. At any time, the consumed dissolved oxygen is marked to C_{3i}, and the concentration of oxidized SO_3^{-2} is 2 (C_{3i}), and then plotted as 2 (C_{3i})-t. The slope of the obtained straight line is the intrinsic oxidation rate of SO_3^{-2} .

$$SO_3^{2-} + 1/2O_2 \to SO_4^{2-}$$
 (7)

When the temperature is constant, the reaction rate of SO_3^{2-} at different initial $Na_2S_2O_3$ concentration (C_i) is determined, and then plotting with Ln(r)- Ln(c_i), the slope of the obtained straight line is the reaction order of the inhibitor. Similarly, by measuring the reaction rate of SO_3^{2-} at different initial Na_2SO_3 concentrations (C_i), and then plotting it with Ln (r) -Ln (C_j), the slope of the obtained straight line is the reaction order of SO_3^{2-} .

The apparent oxidation kinetic parameters and inhibition mechanism of Na₂SO₃ could be obtained by the following methods. The liquid samples taken from the experiment were quantitatively analyzed by Dionex Aquion analytical multi-function ion chromatography (Dionex Aquion, Thermo Scientific, America). The generated SO₄²⁻ concentration (C_{4i}) at different absorption times was measured, and then plotted as C_{4i}-t. The slope of the obtained straight line was the SO₄²⁻ generation rate. Similarly, by measuring the SO₄²⁻ generation rate at different initial Na₂S₂O₃ concentrations (C_k), and then plotting it with Ln (r) -Ln (C_k), the slope of the obtained straight line is the reaction order of the inhibitor.

3. Results and Discussion

3.1. Effects of Flue Gas Components on Desulfurization Performance

The effects of the primary gas components on desulfurization performance were investigated and the results are shown in Fig. 1. The total flow rate of the simulated flue gas was 1.0 L/min. The initial SO₂ concentration was 5,000 mg/m³, and the Na_2SO_3 mass concentration was 2%. The results showed that O_2 and NO_2 in flue gas had a significant effect on the effective desulfurization time, but had a negligible effect on the maximum desulfurization efficiency. Curves of a, b, and d in Fig. 1 revealed that the absorption capacity of SO_2 decreased with the presence of O_2 in the flue gas. The higher the O₂ concentration, the smaller the absorption capacity of SO₂. This may be attributed to the consumption of SO_3^{2-} by O_2 , as shown in the Eq. (2). When the oxygen concentration increased from 0 to 6%, the absorption capacities of SO_2 decreased from 9.96 to 8.69g/L, respectively. Accordingly, the increase in the concentration of SO422 from 0 to 5.86g/L detected in the absorption solution indicated that part of SO_3^{2-} was directly oxidized to SO_4^{2-} , thereby reducing its participation in the SO₂ absorption reaction.

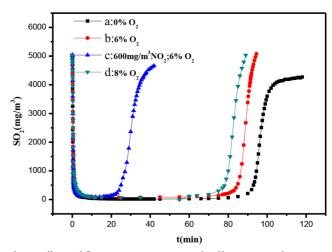


Fig. 1. Effects of flue gas components on desulfurization performances.

Denitration in a non-ferrous metal smelting flue gas usually involves the oxidation of NO to NO₂ by ozone and the absorption by aqueous solution. As can be seen from the curves of b and c in Fig. 1, when NO₂ was introduced into the flue gas, the absorption capacities of SO₂ decreased from 8.69 to 3.04g/L, which indicated that NO₂ in flue gas is unfavorable for the absorption of SO₂. Irrespective of its excellent solubility in water, NO₂ still have a poor absorption effect in aqueous solution than in Na₂SO₃ solution from Fig. S2. The absorption of NO₂ by Na₂SO₃ solution certified that NO₂ and SO₂ had a competitive effect on SO₃²⁻. The consumption of SO₃²⁻ by NO₂ as shown in the Eq. (8)-(11) is the main reason for the decrease in the absorption capacity of SO₂. After the absorption of pure NO₂ by Na₂SO₃, the SO₃²⁻ in the absorption solution was converted to SO₄²⁻, this observation validates the role of Eq. (8)-(11) in the absorption system.

The absorption curves of SO₂ with the presence of NO₂ were shown in Fig. S3. Compared with curve b in Fig. 1, the absorption capacity of SO₂ decreased from 8.69 g/L to 3.04 g/L. Compared with the absorption of NO₂ by 2% Na₂SO₃ in Fig. S2, the absorption capacity of NO₂ decreased from 0.33 g/L to 0.21 g/L, which proved that NO₂ and SO₂ had competitive effects on SO₃²⁻. In addition, NO₂ is absorbed to form NO₂⁻, which can react with SO₃²⁻ to form the intermediate sulfur nitrogen compound, which can be stable at a high S/N ratio and low pH [25, 26]. The reaction equation involved is shown as Eq. (8)-(11):

$$SO_3^{2-} + 2NO_2 + H_2O \rightarrow 2NO_2^- + SO_4^{2-} + 2H^+$$
 (8)

$$HSO_3^- + 2NO_2 + H_2O \rightarrow 2NO_2^- + SO_4^{2-} + 3H^+$$
 (9)

$$SO_3^{2-} + 2NO_2^{-} + 4H^+ \rightarrow 2NO + 2H_2O + H_2SO_4$$
 (10)

$$NO_2^- + H^+ + HSO_3^- \rightarrow ONSO_3^- + H_2$$
(11)

3.2. Selection of Oxidation Inhibitor for S(IV)

To inhibit the oxidation of Na₂SO₃, the effects of different inhibitors on the desulfurization performances of Na₂SO₃ were investigated.

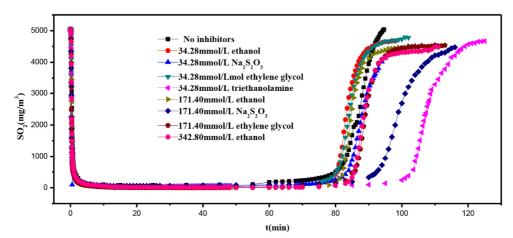


Fig. 2. Effect of different additives on desulfurization performances.

The results are shown in Fig. 2. When 34.28 mmol/L of ethanol was added into the absorption solution, the absorption capacity of SO₂ increased from 8.47 to 8.49 g/L, and the utilization rate of Na₂SO₃ increased from 83.37% to 83.57%, indicating that ethanol had a slight inhibiting effect on the oxidation of SO₃²⁻. However, increasing the concentration of ethanol in the absorption solution did not promote the inhibiting effect of ethanol on the oxidation of SO₃²⁻, this observation is attributed to the expulsion of excessive ethanol from the absorption system by the simulated flue gas. Moreover, this assertion is also validated by the presence of ethanol detected in the tail gas.

When ethylene glycol was added as an inhibitor to the absorption solution, the oxidation of SO_3^{2-} was also inhibited. The ethylene glycol will act as the $\bullet SO_3^{-}$ radical-trapping material and break the chain by reacting with the $\bullet SO_3^{-}$ radical. Finally, ethylene glycol may generate aldehyde or carboxylate as a result of induced oxidation of ethylene glycol. Increasing the concentration of ethylene glycol led to an insignificant improvement in its inhibiting effect. It can be seen from Fig. 2 that when $Na_2S_2O_3$ was used as an inhibitor, the absorption capacity of SO_2 increased obviously.

Also, the inhibiting effect of triethanolamine on oxidation of SO_3^{2*} was investigated. As seen from Fig. 2, the absorption capacities of SO_2 increased to 28.45% after the addition of 34.28 mmol/L

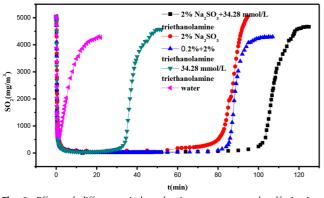


Fig. 3. Effect of different triethanolamine content on desulfurization performances.

of triethanolamine into the absorption solution, which primarily indicated that triethanolamine can promote SO_2 absorption in this system. However, the triethanolamine solution presents alkaline and produces ammonium ions, which may be one of the reasons for promoting the absorption capacity of SO_2 . Therefore, further exploration was preceded and the results were shown in Fig. 3. In comparison with 2% Na₂SO₃, the pure 0.2% triethanolamine absorbed more SO_2 . Therefore, the addition of triethanolamine mainly promotes the absorption capacity of SO_2 Eq. (12), and to some extent, inhibits the oxidation of $SO_3^{2^2}$.

$$N(CH_{2}CH_{2}OH)_{3} + SO_{2} = \left(\binom{(OCH_{2}CH_{2})_{2}}{HOCH_{2}CH_{2}} \right) = S_{0}^{(0)}_{4}^{2^{-}} + 2H_{(12)}^{+}$$

By comparison, the inhibiting effect of $Na_2S_2O_3$ on oxidation of $SO_3^{2^{-}}$ was more excellent and matched with the Na_2SO_3 desulfurization system. Then, the effects of $Na_2S_2O_3$ as an inhibitor on the desulfurization of the Na_2SO_3 system were investigated.

3.3. Effects of Na₂S₂O₃ Inhibitor on Desulfurization Performance

Increasing Na₂SO₃ concentration can improve desulfurization efficiency and increase the absorption capacity of SO₂. However, it also increased the oxidation rate of SO₃²⁻, resulting in a lower utilization rate of Na₂SO₃. The effects of Na₂SO₃ concentration on desulfurization were investigated at a constant Na₂S₂O₃ concentration. From Fig. 4(a), in the absence of Na₂SO₃ was 8.83g/L, 11.77 g/L, 15.06 g/L, and the utilization rate of Na₂SO₃ was 86.88%, 77.22%, and 74.11%, respectively. When Na₂SO₂ was added into the absorption solution as an inhibitor, the absorption capacities of SO₂ by 2%, 3% and 4% Na₂SO₃ was different of SO₂ by 2%, 3% and 4% Na₂SO₃ was added into the absorption solution as an inhibitor, the absorption capacities of SO₂ by 2%, 3% and 4% Na₂SO₃ were increased to 19.48%, 31.52%, and 33.07%, respectively.

In order to clarify the dosage relationship between Na₂S₂O₃ and the oxidation of Na₂SO₃, the inhibiting effects of Na₂S₂O₃ concentration were investigated at constant Na₂SO₃ concentration. As seen from Fig. 5, pure Na₂S₂O₃ solution had poor desulfurization efficiency, but the absorption capacity of SO₂ was enhanced significantly after adding Na₂S₂O₃ as an inhibitor. The absorption capacity of SO₂ increased progressively with the increase in Na₂S₂O₃

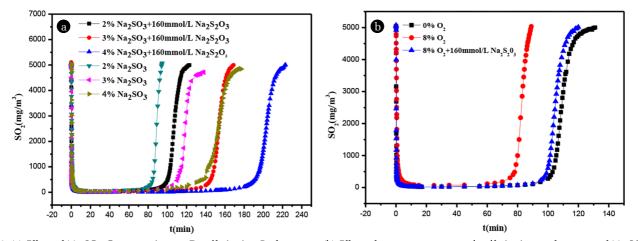


Fig. 4. (a) Effect of Na₂SO₃ Concentration on Desulfurization Performance, (b) Effect of oxygen content on desulfurization performance of Na₂SO₃.

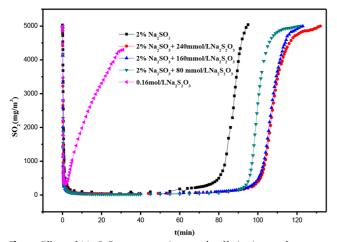


Fig. 5. Effect of Na₂S₂O₃ concentration on desulfurization performance.

concentration and attained a maximum level when the concentration of $Na_2S_2O_3$ is 240 mmol/L. Therefore, the concentration of $Na_2S_2O_3$ should be matched with the concentration of Na_2SO_3 to optimize the dosage of inhibitors.

The oxidation of Na₂SO₃ was prompted by the oxygen from the flue gas which dissolved into the absorption solution and reacted with $SO_3^{2^{\circ}}$ to produce stable $SO_4^{2^{\circ}}$, so the concentration of oxygen in the flue gas was also one of the main factors affecting the SO_2 removal. As shown in Fig. 4(b), the increase of oxygen concentration without inhibitor led to the increase in the oxidation rate of $SO_3^{2^{\circ}}$ and the decrease in the absorption capacity of SO_2 . When $Na_2S_2O_3$ was added as an inhibitor, the increase in oxygen concentration had little influence on the oxidation rate of $SO_3^{2^{\circ}}$ and absorption capacity of SO_2 .

The inhibition mechanism of $Na_2S_2O_3$ on the oxidation of Na_2SO_3 may be summarized as follows: the oxidation reaction of SO_3^{2-} is a free radical chain reaction and the inhibitor mainly inhibits the oxidation of sulfite by preventing the chain reaction. The $S_2O_3^{2-}$ combines with the sulfite free radical to form an inert substance that prevents the sulfite free radical from further reacting with the dissolved oxygen. The reaction mechanisms are shown in Eqs. (13)-(16) [27]:

$$\cdot SO_3^- + S_2O_3^{2-} \to S_2O_3^- + SO_3^{2-}$$
(13)

$$\cdot$$
 SO₃⁻ + \cdot S₂O₃ \rightarrow polythionates (14)

$$\cdot S_2 O_3^- + S_2 O_3^- \rightarrow \text{polythionates}$$
 (15)

polythionates +
$$H_2O \rightarrow S_2O_3^{2-} + SO_3^{2-} + 2H^+$$
 (16)

3.4. The Kinetics of SO32- Oxidation and Its Inhibition

The intrinsic oxidation kinetics and apparent oxidation kinetics of sulfite were studied to properly elucidate the oxidation mechanism of sulfite. The intrinsic oxidation kinetics are shown in Fig. 6 and Fig. 7. It can be seen from Fig. 6, when the concentration of $Na_2S_2O_3$ was 0.10, 0.15 and 0.2mmol/L, respectively. The initial concentration method was used to obtain the reaction rate of sulfite under different inhibitor concentrations. The sulfite concentration and reaction rate was dimensionless with respect to the initial values. Therefore, as shown in Fig. 6, the reaction order of $Na_2S_2O_3$ was -2.22. This indicates that $Na_2S_2O_3$ inhibits sulfite oxidation significantly, and the sulfite oxidation rate decreased significantly with the increase in $Na_2S_2O_3$ concentration.

The reaction order of sodium sulfite under different initial Na₂SO₃ concentration was shown in Fig. 7. When 0.20 mmol/L of Na₂S₂O₃ was added, and the initial concentration of sodium sulfite was 4, 6, 8, 10 mmol/L, the sulfite concentration and reaction rate was dimensionless with respect to the initial values. Therefore, the reaction order of Na₂SO₃ as shown in Fig. 7 was 2.393, which indicates that the oxidation rate of sulfite increases with the increase in the initial concentration of Na₂SO₃.

The apparent oxidation kinetics mechanism was obtained by analyzing the composition of the desulfurization solution. Dionex Aquion analytical multi-function ion chromatography was used to quantitatively analyze the desulfurization solution with or without inhibitor. As can be seen from Fig. 8, the rate of sulfate formation was 53.08 mg/(L·min) in the absence of inhibitor. When 240mmol/L of inhibitor was added, the rate of sulfate formation was 7.28 mg/(L·min), which indicated that Na₂S₂O₃ inhibits sulfite oxidation, thereby reducing the rate of sulfate formation.



Fig. 6. Reaction order of $Na_2S_3O_3$.

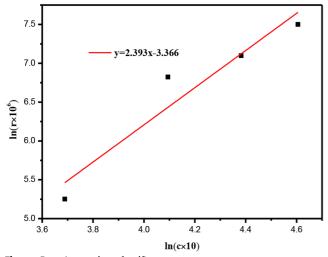


Fig. 7. Reaction order of sulfite.

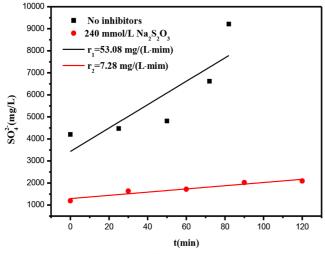


Fig. 8. Effect of Na₂S₂O₃ on sulfate formation rate.

The reaction order of sulfate at different initial Na₂S₂O₃ concentration was shown in Fig. S3. On the addition of 80, 160, and 240 mmol/L of Na₂S₂O₃, respectively, the sulfate content was determined by ion chromatography, from which the reaction rate was calculated. Since the sulfate concentration and the reaction rate are dimensionless with respect to the initial value. Therefore, the reaction order of Na₂S₂O₃ as shown in Fig. S3 was -1.35. This result revealed that Na₂S₂O₃ inhibits the rate of sulfate formation significantly, and the rate of sulfate formation decreases significantly with increasing concentration of Na₂S₂O₃.

4. Conclusions

In this study, a new cyclic sodium sulfite process was proposed to remove SO₂ from a non-ferrous metal smelting flue gas. The effects of different components of flue gas on desulfurization performance were investigated, and the results indicated that the NO₂ had a competitive effect with SO₂ on SO₃²⁻ which led to a significant decrease in the absorption capacity of SO₂. The O₂ in the flue gas contributed to the decrease in the absorption capacity of SO₂ due to its oxidative effect on Na₂SO₃. By comparison, the inhibiting effect of Na₂S₂O₃ on the oxidation of SO₃²⁻ was more excellent and matched with the Na₂SO₃ desulfurization system. The inhibition mechanism is understood on the basis of the free radical chain reaction, whereby S₂O₃²⁻ combined with the sulfite free radical to form an inert substance, thus, quenching the reaction of free radical with the dissolved oxygen and invariably inhibiting the oxidation of SO₃²⁻.

In addition, the intrinsic oxidation kinetics showed that the reaction order of $Na_2S_2O_3$ was -2.22, and the reaction order of Na_2SO_3 was 2.393. On the addition of 240 mmol/L of $Na_2S_2O_3$ in Na_2SO_3 solution, the apparent oxidation kinetics gave a sulfate formation rate of 7.28 mg/(L·min). However, in the absence of $Na_2S_2O_3$ in the Na_2SO_3 solution, the formation rate of sulfate was 53.08mg/(L·min). The reaction order of $Na_2S_2O_3$ was -1.35, which indicated that $Na_2S_2O_3$ has an excellent inhibiting effect on the oxidation of SO_3^{-2} and the desulfurization performances are improved significantly.

Acknowledgment

This study was supported by the National Key R&D Program of China (No.2017YFC0210500), Key Scientific Research Project of Colleges in Henan Province-China (No.20A610011), the China Postdoctoral Science Foundation (No.2018M640393). This work was also funded by the Scientific and Technological Project of Henan Province-China (No. 202102310283).

Author Contributions

YP.M. (Associate professor) contributed to the conception of the study. DL.Y. (Master student) conducted all the experiments and wrote the manuscript. XJ.Z. (Associate professor) contributed to

analysis and manuscript preparation. Z.Q. (Professor) performed the data measurement and analyses. WJ.H. (Associate professor) helped perform the analysis and writing examination.

References

- Miao XY, Zhan HL, Zhao K, et al. Terahertz-dependent PM_{2.5} monitoring and grading in the atmosphere. *Sci. China Phys. Mech.* 2018;61:104211.
- Jiang BF, Xie YL, Xia DH, Liu XJ. A potential source for PM_{2.5}: Analysis of fine particle generation mechanism in wet flue gas desulfurization system by modeling drying and breakage of slurry droplet. *Environ. Pollut.* 2019;246:249-256.
- Cheng Z, Wang SX, Jiang JK, et al. Long-term trend of haze pollution and impact of particulate matter in the Yangtze River Delta, China. *Environ. Pollut.* 2013;182:101-110.
- Zhu WF, Xie JK, Cheng Z, et al. Influence of chemical size distribution on optical properties for ambient submicron particles during severe haze events. *Atmos. Environ.* 2018;191: 162-171.
- Yao S, Cheng SY, Li JB, Zhang HY, Jia J, Sun XW. Effect of wet flue gas desulfurization (WFGD) on fine particle (PM_{2.5}) emission from coal-fired boilers. *J. Environ. Sci.* 2019;77:32-42.
- Ge XL, Li L, Chen YF, et al. Aerosol characteristics and sources in Yangzhou, China resolved by offline aerosol mass spectrometry and other techniques, *Environ. Pollut.* 2017;225:74-85.
- Guo S, Hu M, Zamora ML, et al. Elucidating severe urban haze formation in China, *P. Natl. Acad. Sci. USA.* 2014;111: 17373-17378.
- 8. Li K, Chen L, White SJ, et al. Effect of nitrogen oxides (NO and NO₂) and toluene on SO₂ photo oxidation, nucleation and growth: A smog chamber study. *Atmos. Res.* 2017;192:38-47.
- Ma SH, Wen ZG, Chen JN. Scenario Analysis of Sulfur Dioxide Emissions Reduction Potential in China's Iron and Steel Industry. J. Ind. Ecol. 2012;16:506-517.
- 10. Ding J, Zhong Q, Zhang SL, Song FJ, Bu YF, Simultaneous removal of NO_X and SO_2 from coal-fired flue gas by catalytic oxidation-removal process with H_2O_2 . *Chem. Eng. J.* 2014;243: 176-182.
- Hao RL, Yang S, Yuan B, Zhao Y. Simultaneous desulfurization and denitrification through an integrative process utilizing NaClO₂/Na₂S₂O₈. *Fuel Process. Technol.* 2017;159:145-152.
- Ma YP, Yuan DL, Mu BL, Gao L, Zhang XJ, Zhang HZ. Synthesis, properties and application of double salt (NH₄)₂Mg(SO₄)₂·6H₂O in wet magnesium-ammonia FGD process. *Fuel* 2018;219:12-16.
- Yang BC, Ma SX, Cui RJ, Sun SJ, Wang J, Li SC. Simultaneous removal of NO_X and SO₂ with H₂O₂ catalyzed by alkali/magnet-

ism-modified fly ash: High efficiency, Low cost and Catalytic mechanism. *Chem. Eng. J.* 2019;359:233-243.

- Gao L, Li Y, He J. Intensifying effects of zinc oxide wet flue gas desulfurization process with citric acid. J. Environ. Chem. Eng. 2019;7:102831.
- Moeller W, Winkler K. The double contact process for sulfuric acid production. J. Air Pollut. Contr. Assoc. 1968;18:324-325.
- Jiang XP, Liu YZ, Gu MD. Absorption of sulphur dioxide with sodium citrate buffer solution in a rotating packed bed. *Chinese* J. Chem. Eng. 2011;19:687-692.
- Pan WH, Shi YX, Liu JP. The design and development of a mass balance calculation software for sodium-calcium dual-alkali scrubbing flue gas desulfurization. *Appl. Mech. Mater.* 2012;155:27-31.
- Wang XS, Huang YB, Lin ZJ, Cao R. Phosphotungstic acid encapsulated in the mesocages of amine-functionalized metal-organic frameworks for catalytic oxidative desulfurization. *Dalton T.* 2014;43:11950-11958.
- Xie WL, Wan F. Immobilization of polyoxometalate-based sulfonated ionic liquids on UiO-66-2COOH metal-organic frameworks for biodiesel production via one-pot transesterificationesterification of acidic vegetable oils. *Chem. Eng. J.* 2019;365: 40-50.
- 20. Yamamoto Y, Yamamoto H, Takada D, Kuroki T, Fujishima H, Okubo M. Simultaneous removal of NO_X and SO_X from flue gas of a glass melting furnace using a combined ozone injection and semi-dry chemical process. *Ozone-Sci. Eng.* 2016;38:211-218.
- 21. Tomas-Alonso F. A new perspective about recovering SO_2 off gas in coal power plants: Energy saving. Part III. Selection of the best methods. *Energ. Source.* 2005;27:1051-1060.
- Sipos L. Inhibition of sulfite oxidation by phenols: Screening antioxidant behavior with a clark oxygen sensor. J. Chem. Educ. 1998;75:1603-1605.
- Cui S, Wang LD, Hao SQ, Du LX. Oxidation rate of sodium sulfite in presence of inhibitors. *Energ. Procedia* 2012;16: 2060-2066.
- Wang LD, Ma YL, Hao JM, Zhao Y. Mechanism and kinetics of sulfite oxidation in the presence of ethanol. *Ind. Eng. Chem. Res.* 2009;48:4307-4311.
- Siddiqi MA, Petersen J, Lucas K. A Study of the effect of nitrogen dioxide on the absorption of sulfur dioxide in wet flue gas cleaning processes. *Ind. Eng. Chem. Res.* 2001;40:2116-2127.
- Sima A, Fredrik N, Klas A, Filip J. Modeling the nitrogen and sulfur chemistry in pressurized flue gas systems. *Ind. Eng. Chem. Res.* 2015; 54:1216-1227.
- Chang JCS, Brna TG. Pilot testing of sodium thiosulfate. *Environ.* Prog. 1986;5:225-233.