This issue includes 12 papers regarding air pollution, waste-water treatment, water quality management, and groundwater management areas. Yim et al. [1] evaluated the efficiency of a badge-type diffusive sampler to measure indoor formaldehyde concentrations. They concluded that a diffusive sampler using 2,4-dinitrophenylhydrazine (DNPH) reagent was found to be a suitable tool for measuring the formaldehyde concentration in an indoor environment. Park et al. [2] analyzed the in vitro toxicities which are incurred due to the mobilization metals from standard reference material 1648, fine (PM$_{2.5}$), and coarse (PM$_{10}$) particulate matter collected in Seoul metropolitan area. They reported that more damage to biomolecules was incurred upon exposure to PM$_{2.5}$ than to PM$_{10}$ and concluded that different arrays of metals were involved in the oxidation of DNA and proteins.

Shin and Jo [3] examined the concentrations, emission rates, and source characteristics of a variety of volatile organic compounds (VOCs) in 30 newly-constructed apartment buildings by measuring indoor and outdoor VOC concentrations over a 2-year period. They reported aromatic (except for naphthalene), aliphatic, and terpene compounds exhibited a gradual decreasing trend while the six halogenated VOCs and naphthalene did not significantly vary during study period. Woo and Choi [4] suggested guidelines on standard model laboratory for greenhouse gas emissions reduction on the campus.

Hossain et al. [5] investigated efficiency of textile wastewater of removing COD and turbidity by the electrocoagulation process via experimental study. Shafiquzzam et al. [6] reported the development of iron mixed ceramic pellet manufactured by combining clay soil, rice bran, and Fe(0) powder at 600°C for arsenic (As) removal from groundwater. The maximum adsorption capacities of As(III) and As(V) from the Langmuir isotherm were found to be 4.0 and 4.5 mg/g, respectively. Singh and Kalamdhad [7] reported the speciation of heavy metals (Zn, Cu, Mn, Fe, Ni, Pb, Cd, and Cr) during rotary drum composting of water hyacinth (Eichhornia crassipes) for a period of 20 days. They concluded that, rotary drum was very efficient for the degradation of organic matter as well as for the reduction of mobility and bioavailability of heavy metals during water hyacinth composting. Ban et al. [8] suggested an integrated governance model to manage nonpoint source pollutions.

Ahn and Jones [9] studied soil properties of young created mitigation wetlands (<10 years old), hydrologically comparable in the Piedmont region of Virginia by analyzing soil organic matter (SOM), soil organic carbon (SOC), pH, gravimetric soil moisture, and bulk density. They found SOM and SOC showed slight increase with wetland age while the increase was more evident with SOC. They reported that the results may caution the use of the conversion factor, which may lead to an overestimation of carbon sequestration potentials of newly created wetlands.

Jin et al. [10] investigated the safety and field applicability of the guided drainage system for underpass structures in Yeongjong Sky City business. Groundwater behavior was analyzed by using 3-dimensional groundwater program MODFLOW and influence of ground water on safety of the underpass structures has been calculated by FLAC2D. They concluded that safety factor relating to the buoyancy of the structure was greater than 1.2. They also concluded that quality and quantity of groundwater can be regarded as useful water resource of the neighboring area. Oh et al. [11] estimated the hydraulic conductivity (K) of fluvial deposits at bank locations of Nakdong River. K values of 80 samples from 13 boreholes were estimated. They suggested that the grain-size analysis may be used as an effective auxiliary tool to determine the K values of fluvial deposits. Nam et al. [12] evaluated the optimal preparation guidelines of a cathode catalyst layer by non-precious metal catalysts based on electrochemical performance in single-chamber microbial fuel cells (MFCs). They reported that proper control of the non-precious metal
catalyst layer and substrate concentration are highly interrelated, and reveal how those combinations promote the economic power generation of single-chamber MFCs.

In general, this issue of EER includes increased number of papers due to increased submissions. Editorial team appreciates members submitted papers and also wants to thank reviewers who donated their precious time. On the other hand, editorial team clearly recognizes it is also critical to maintain the quality of papers. I am happy to announce the list of new associate editors and with this reinforced team, the quality of papers of the EER will be improved further. However, the EER is still waiting for the launching of new on-line submission system due to minor issues. I hope this problem will be solved as soon as possible with help of headquarter office of KSEE.

As I have written all the time, readers are invited to enjoy online copies of EER from our Website (eer.or.kr) free of charge. I thank again every supporter of the EER. Finally I want to cordially ask you to remember papers in the EER for your references.

It is a good news for EER that this issue includes increased number of papers. This was due to be increased number of submissions and faster review processes. Editorial team appreciates members who submitted papers and also wants to thank reviewers who donated their precious time. On the other hand, editorial team clearly recognizes it is also critical to maintain the quality of papers.

As an editor of EER, I am happy to announce some good news to all members.

First, EER has invited new associate editors who have strong academic background and agreed to commit themselves to contribute to EER. With this reinforced team, the quality of papers of the EER will be improved further.

Second, I am happy to announce that we finally launched new on-line submission system with new home page. First of all, papers of EER will be edited using full XML that meets international publishing standard and thus articles in EER can be found by other international journal in the world simultaneously. Also, this new on-line system will include all the updated features, such as CrossCheck to check duplicate submission CrossMark to check the status of paper, Fundref to include information of fund provider and ORCID to identify writers, required for international level journals. The new homepage will use Pubreader so that users can read and use EER using mobile devices such as IPAD or smart phones.

Third, EER also is happy to announce the new domain name “eeer.org” instead of eer.or.kr. Unfortunately eer.org was already taken so the above domain became our second choice. This is a part of effort to make EER is not only a journal in Korea but also a journal international world.

EER has been listed in SCOPUS, EBSCO, University of Hannover Library and University of Technology Sydney and other international academic database systems. I believe EER will also be listed in SCI in the near future. I cordially want to ask all members help us to improve quality and reputation of EER via assisting the following area;

1) Please consider to cite papers in the EER as often as possible when you write papers.
2) Please submit your valuable academic papers to the EER
3) Please review submitted paper as fast as you can.

On behalf of the editorial team, I appreciate all the support from members of EER. As always, readers are invited to enjoy online copies of EER from our website (eeer.org) free of charge, and are also asked to cite our journal as often as possible.

References

2. Park VI, Lim L, Song H. Distinct oxidative damage of biomolecules by arrays of metals mobilized from different types of airborne particulate matters; SRM1648, fine (PM_{10}), and coarse (PM_{2.5}) fractions. Environ. Eng. Res. 2013;18:139-143.